Skip to main content
Log in

Structural transition and metallization in liquid selenium

  • Fluids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The insulator-metal transitions of different kinds caused by heating above the melting temperature under pressure of tens kilobars and by compressing at the critical temperature to a pressure of about 1.1 kbar occur in liquid selenium. At tens kilobars, metallization is interpreted as the forbidden energy band vanishing due to a gradual structural transition (melting of polymer chains) described by the Clapeyron-Clausius equation. At supercritical temperatures, the insulator-metal transition is caused by percolation of overlapping electron shells (classically accessible spheres) of virtual atoms in molecules Se2 remaining when polymer chains decay. The percolation threshold in such a system has been found to increase due to coupling of virtual atoms. The thermally activated conductivity in the vicinity of percolation threshold has been calculated and compared with existing experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Fischer and R. W. Schmutzler, in The Physics of Selenium and Tellurium, Ed. by E. Gerlach and P. Grosse (Springer-Verlag, Berlin, 1979), Springer Ser. Solid-State Sci. 13, 225 (1979).

    Google Scholar 

  2. N. F. Mott and E. A. Davis, Electron Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979; Mir, Moscow, 1992).

    Google Scholar 

  3. V. V. Brazhkin, R. N. Voloshin, and S. V. Popova, Pis’ma Zh. Éksp. Teor. Fiz. 50, 392 (1989) [JETP Lett. 50, 424 (1989)]; V. V. Brazhkin, private communication.

    Google Scholar 

  4. J. M. Ziman, Models of Disorder: the Theoretical Physics of Homogeneously Disordered Systems (Cambridge Univ. Press, Cambridge, 1979; Mir, Moscow, 1982).

    Google Scholar 

  5. N. F. Mott, Metal-Insulator Transition (Taylor & Francis, London, 1991).

    Google Scholar 

  6. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  7. M. J. Hirsch, Comments Condens. Matter Phys. 13, 249 (1987).

    Google Scholar 

  8. W. W. Warren, Jr. and R. Dupree, Phys. Rev. B 22, 2257 (1980).

    Article  ADS  Google Scholar 

  9. S. Hosokawa, T. Kuboi, and K. Tamura, Ber. Bunsenges. Phys. Chem. 101, 120 (1997).

    Google Scholar 

  10. H. Hoshino, R. W. Schmutzler, and F. Hensel, Ber. Bunsenges. Phys. Chem. 80, 27 (1976).

    Google Scholar 

  11. H. Hoshino, R. W. Schmutzler, W. W. Warren, Jr., and F. Hensel, Philos. Mag. 33, 255 (1976).

    Google Scholar 

  12. W. W. Warren, Jr., J. Non-Cryst. Solids 250–252, 506 (1999).

    Google Scholar 

  13. S. Hosokawa and K. Tamura, J. Non-Cryst. Solids 205–207, 261 (1996).

    Google Scholar 

  14. F. Yonezawa, H. Ohtani, and T. Yamaguchi, J. Non-Cryst. Solids 250–252, 510 (1999).

    Google Scholar 

  15. F. Shimojo, K. Hoshino, M. Watabe, and Y. Zempo, J. Phys.: Condens. Matter 10, 1199 (1998).

    ADS  Google Scholar 

  16. F. Shimojo, K. Hoshino, Y. Zempo, and M. Watabe, J. Non-Cryst. Solids 250–252, 542 (1999).

    Google Scholar 

  17. A. A. Likal’ter, Usp. Fiz. Nauk 170, 831 (2000).

    Google Scholar 

  18. A. A. Likal’ter, Zh. Éksp. Teor. Fiz. 94(12), 157 (1988) [Sov. Phys. JETP 67, 2478 (1988)].

    ADS  Google Scholar 

  19. K.-P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1979; Mir, Moscow, 1984).

    Google Scholar 

  20. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer-Verlag, New York, 1984).

    Google Scholar 

  21. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969).

    Article  Google Scholar 

  22. A. L. Bug, S. A. Safran, G. S. Grest, and I. Webman, Phys. Rev. Lett. 55, 1896 (1985).

    Article  ADS  Google Scholar 

  23. D. Staufer and A. Aharony, Introduction to Percolation Theory (Taylor & Francis, Philadelphia, 1991, 2nd ed.).

    Google Scholar 

  24. A. A. Likal’ter, Zh. Éksp. Teor. Fiz. 107, 1996 (1995) [JETP 80, 1105 (1995)].

    Google Scholar 

  25. V. A. Alekseev, V. G. Ovcharenko, and Yu. F. Ryzhkov, J. Phys. (Paris) 41, C8–89 (1980); missed Figures, private communication by V. A. Alekseev.

    Google Scholar 

  26. A. A. Likalter, in Transport and Optical Properties of Nonideal Plasma, Ed. by G. A. Kobzev, I. T. Iakubov, and M. M. Popovich (Plenum, New York, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 120, No. 2, 2001, pp. 379–388.

Original Russian Text Copyright © 2001 by Likalter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Likalter, A.A. Structural transition and metallization in liquid selenium. J. Exp. Theor. Phys. 93, 336–343 (2001). https://doi.org/10.1134/1.1402734

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1402734

Keywords

Navigation