Skip to main content
Log in

Electrodynamics and dispersion properties of a magnetoplasma containing elongated and rotating dust grains

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The electrodynamics and dispersion properties of a magnetized dusty plasma containing elongated and rotating charged dust grains are examined. Starting from an appropriate Lagrangian for dust grains, a kinetic equation for the dust grain and the corresponding equations of motion are derived. Expressions for the dust charge and dust current densities are obtained with the finite size (the dipole moment) of elongated and rotating dust grains taken into account. These charge and current densities are combined with the Maxwell-Vlasov system of equations to derive dispersion relations for the electromagnetic and electrostatic waves in a dusty magnetoplasma. The dispersion relations are analyzed to demonstrate that the dust grain rotation introduces new classes of instabilities involving various low-frequency waves in a dusty magnetoplasma. Examples of various unstable low-frequency waves include the electron whistler, the dust whistler, dust cyclotron waves, AlfvÉn waves, electromagnetic ion-cyclotron waves, as well as lower-hybrid, electrostatic ion cyclotron, modified dust ion-acoustic waves, etc. Also found is a new type of unstable waves whose frequency is close to the dust grain rotation frequency. The present results should be useful in understanding the properties of low-frequency waves in cosmic and laboratory plasmas that are embedded in an external magnetic field and contain elongated and rotating charged dust grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 345 (1990).

    Article  Google Scholar 

  2. P. K. Shukla, Phys. Scr. 45, 504 (1992).

    ADS  Google Scholar 

  3. P. K. Shukla and V. P. Silin, Phys. Scr. 45, 508 (1992).

    ADS  Google Scholar 

  4. A. Barkan, R. L. Merlino, and N. D’Angelo, Phys. Plasmas 2, 3563 (1995); C. Thomson, A. Barkan, N. D’Angelo, and R. L. Merlino, Phys. Plasmas 4, 2331 (1997); R. L. Merlino, A. Barkan, C. Thompson, and N. D’Angelo, Phys. Plasmas 5, 1607 (1998).

    ADS  Google Scholar 

  5. H. R. Prabhakara and V. L. Tanna, Phys. Plasmas 3, 3176 (1996).

    Article  ADS  Google Scholar 

  6. E. Thomas, Jr. and M. Watson, Phys. Plasmas 6, 4111 (1999); V. E. Fortov, A. G. Kharpak, S. A. Kharpak, et al., Phys. Plasmas 7, 1374 (2000); V. I. Molotkov, A. P. Nefedov, V. M. Torchinskii, et al., Zh. Éksp. Teor. Fiz. 116, 902 (1999) [JETP 89, 477 (1999)].

    ADS  Google Scholar 

  7. A. Barkan, N. D’Angelo, and R. L. Merlino, Planet. Space Sci. 44, 239 (1996).

    Article  ADS  Google Scholar 

  8. Y. Nakamura, H. Bailung, and P. K. Shukla, Phys. Rev. Lett. 83, 1602 (1999).

    ADS  Google Scholar 

  9. P. K. Shukla, in Frontiers in Dusty Plasmas, Ed. by Y. Nakamura, T. Yokota, and P. K. Shukla (Elsevier, Amsterdam, 2000), p. 3.

    Google Scholar 

  10. F. Verheest, Waves in Dusty Plasmas (Kluwer, Dordrecht, 2000).

    Google Scholar 

  11. M. Harwit, Astrophysical Concepts (Springer-Verlag, New York, 1988), p. 405.

    Google Scholar 

  12. L. Spitzer, Jr., Physical Processes in Interstellar Medium (Wiley, New York, 1977; Mir, Moscow, 1981), p. 182.

    Google Scholar 

  13. U. Mohideen, H. U. Rahman, M. A. Smith, et al., Phys. Rev. Lett. 81, 349 (1998); H. U. Rahman, U. Mohideen, M. A. Smith, et al., Phys. Scr. T 89, 186 (2000).

    ADS  Google Scholar 

  14. V. I. Molotkov, A. P. Nefedov, M. Yu. Putsyl’ink, et al., Pis’ma Zh. Éksp. Teor. Fiz. 71, 152 (2000) [JETP Lett. 71, 102 (2000)].

    Google Scholar 

  15. D. Tskhakaya and P. K. Shukla, Phys. Lett. A 279, 243 (2001).

    Article  ADS  Google Scholar 

  16. N. V. Voshchinnikov and D. A. Semenov, Pis’ma Astron. Zh. 26, 789 (2000) [Astron. Lett. 26, 679 (2000)].

    Google Scholar 

  17. J. Mahmoodi, P. K. Shukla, N. L. Tsintsadze, and D. D. Tskhakaya, Phys. Rev. Lett. 84, 2626 (2000). We have noted an error in Eq. (27), which must contain an addition term (k⊥/k 2 2r (ω+Ω0)2, respectively, on its right-hand side. However, this term does not affect our final finding [viz. our Eq. (31) remains intact], as we have dealt with the resonance case ω≅Ω 0.

    Article  ADS  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

    Google Scholar 

  19. N. N. Bogolyubov, Dynamic Problems of Statistical Physics (Gostekhizdat, Moscow, 1946).

    Google Scholar 

  20. Yu. L. Klimontovich, Kinetic Theory of Nonideal Gases and Nonideal Plasmas (Nauka, Moscow, 1975; Pergamon, Oxford, 1982).

    Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1989).

    Google Scholar 

  22. A. F. Alexandrov, L. S. Bogdankevich, and A.A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1988; Springer-Verlag, Berlin, 1984).

    Google Scholar 

  23. A. B. Mikhailovskii, Theory of Plasma Instabilities: Instabilities of a Homogenous Plasma (Atomizdat, Moscow, 1971; Consultants Bureau, NewYork, 1974), Vol. 1.

    Google Scholar 

  24. M. Rosenberg and D. A. Mendis, IEEE Trans. Plasma Sci. 20, 929 (1992); D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 410 (1994).

    ADS  Google Scholar 

  25. P. K. Shukla and H. U. Rahman, Phys. Plasmas 3, 430 (1996).

    ADS  Google Scholar 

  26. P. K. Shukla, Phys. Lett. A 252, 340 (1999).

    Article  ADS  Google Scholar 

  27. P. K. Shukla, Phys. Rev. E 61, 7249 (2000).

    Article  ADS  Google Scholar 

  28. O. Havnes, J. Troim, T. Blix, et al., J. Geophys. Res. 101, 10839 (1996).

  29. M. Horányi, B. Walch, S. Robertson, et al., J. Geophys. Res. 103, 8575 (1998).

    Article  ADS  Google Scholar 

  30. J. E. Howard, H. R. Dullin, and M. Horányi, Phys. Rev. Lett. 84, 3244 (2000).

    Article  ADS  Google Scholar 

  31. V. W. Chow, D. A. Mendis, and M. Rosenberg, IEEE Trans. Plasma Sci. 22, 179 (1994); M. Rosenberg and D. A. Mendis, IEEE Trans. Plasma Sci. 23, 177 (1995); M. Rosenberg, D. A. Mendis, and D. P. Sheehan, IEEE Trans. Plasma Sci. 27, 239 (1999).

    Article  ADS  Google Scholar 

  32. V. E. Fortov, A. P. Nefedov, O. F. Petrov, et al., Phys. Lett. A 219, 89 (1996).

    Article  ADS  Google Scholar 

  33. V. E. Fortov, A. P. Nefedov, and O. S. Vaulina, Zh. Éksp. Teor. Fiz. 114, 2004 (1998) [JETP 87, 1087 (1998)]; V. Fortov, V. I. Molotkov, A. P. Nefedov, and O. F. Petrov, Phys. Plasmas 6, 1759 (1999).

    Google Scholar 

  34. A. A. Samaryan, O. S. Vaulina, A. P. Nefedov, et al., Zh. Éksp. Teor. Fiz. 118, 119 (2000) [JETP 91, 106 (2000)]; A. A. Sickafoose, J. W. Colwell, M. Horányi, and S. Robertson, Phys. Rev. Lett. 84, 6034 (2000).

    Google Scholar 

  35. H. Fujiyama, H. Kawasaki, S. C. Yang, and Y. Matsuda, Jpn. J. Appl. Phys. 33, 4216 (1994); S. Nunomura, N. Ohno, and S. Takamura, Jpn. J. Appl. Phys. 36, 877 (1997).

    Article  Google Scholar 

  36. G. Uchida, R. Ozaki, S. Iizuka, and N. Sato, in Proceedings of the International Congress on Plasma Physics, European Physical Society, Prague, 1998, Ed. by P. Pavlo, p. 2557; N. Sato, G. Uchida, R. Ozaki, S. Iizuka, and T. Kamimura, in Frontiers in Dusty Plasmas, Ed. by Y. Nakamura, T. Yokota, and P. K. Shukla (Elsevier, Amsterdam, 2000), p. 329.

  37. D. W. Law, H. Steel, B. M. Annaratone, and J. E. Allen, Phys. Rev. Lett. 80, 4189 (1998).

    Article  ADS  Google Scholar 

  38. U. Konopka, D. Samsonov, A. V. Ivlev, et al., Phys. Rev. E 61, 1890 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 120, No. 2, 2001, pp. 340–352.

Original English Text Copyright © 2001 by Tskhakaya, Shukla, Tsintsadze.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tskhakaya, D.D., Shukla, P.K. & Tsintsadze, N.L. Electrodynamics and dispersion properties of a magnetoplasma containing elongated and rotating dust grains. J. Exp. Theor. Phys. 93, 301–312 (2001). https://doi.org/10.1134/1.1402731

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1402731

Keywords

Navigation