Skip to main content
Log in

Angular distributions of the fragments from coulomb explosions of diatomic molecules in intense laser fields

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The angular distributions of the fragments from a Coulomb explosion of a diatomic heteronuclear molecule during multielectron dissociative ionization in a superintense field are considered in terms of classical mechanics. The patterns of angular distributions of the Coulomb explosion fragments are shown to differ in different ranges of laser pulse parameters. In particular, there are two distinct modes of fragment separation: separation in a Coulomb field and separation in the field of an effective “fragment + field” potential. The effective potential includes both the force of Coulomb repulsion between the fragments and the period-averaged force exerted on the system by the field; it can be determined by using the Kramers-Henneberger method. The limits of applicability of the Kramers-Henneberger method to the problem in question are discussed. These limits specify the range of field parameters in which the fragments fly apart in a direction perpendicular to the field for the initially arbitrary orientation of the molecular axis relative to the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Kramers, Les Particles Elementaires, Report to the Eighth Solvay Conference, Brussels, 1950.

  2. W. C. Henneberger, Phys. Rev. Lett. 21, 838 (1968).

    Article  ADS  Google Scholar 

  3. M. Pont, N. R. Walet, M. Gavrila, and C. W. McCrudy, Phys. Rev. Lett. 61, 939 (1988).

    Article  ADS  Google Scholar 

  4. M. Pont and M. Gavrila, Phys. Lett. A 123, 469 (1987).

    Article  ADS  Google Scholar 

  5. M. Pont, Phys. Rev. A 40, 5659 (1989).

    Article  ADS  Google Scholar 

  6. M. Pont, N. R. Walet, and M. Gavrila, Phys. Rev. A 41, 477 (1990).

    Article  ADS  Google Scholar 

  7. Q. Su and J. H. Eberly, Phys. Rev. A 43, 2474 (1991).

    Article  ADS  Google Scholar 

  8. R. Grobe and J. H. Eberly, Phys. Rev. A 47, 719 (1993).

    Article  ADS  Google Scholar 

  9. E. A. Volkova, A. M. Popov, and O. V. Tikhonova, Zh. Éksp. Teor. Fiz. 109, 1586 (1996) [JETP 82, 853 (1996)].

    Google Scholar 

  10. L. Fransinski, K. Codling, P. Hatherly, et al., Phys. Rev. Lett. 58, 2424 (1987).

    ADS  Google Scholar 

  11. K. Boyer, T. S. Luk, J. S. Solem, and S. K. Rhodes, Phys. Rev. A 39, 1186 (1989).

    Article  ADS  Google Scholar 

  12. P. A. Hatherly, L. J. Fransinski, K. Codling, et al., J. Phys. B 23, L291 (1990).

    Article  ADS  Google Scholar 

  13. D. T. Strickland, Y. Beaudoin, P. Dietrich, and P. B. Corkum, Phys. Rev. Lett. 68, 2755 (1992).

    Article  ADS  Google Scholar 

  14. W. T. Hill, J. Zhu, D. L. Hatten, et al., Phys. Rev. Lett. 69, 2646 (1992).

    Article  ADS  Google Scholar 

  15. K. Codling and L. J. Fransinski, J. Phys. B 26, 783 (1993).

    Article  ADS  Google Scholar 

  16. L. J. Fransinski, J. Phys. B 27, L109 (1994).

    ADS  Google Scholar 

  17. P. A. Hatherly, M. Stankiewicz, K. Codling, et al., J. Phys. B 28, 2993 (1994).

    ADS  Google Scholar 

  18. C. Cornaggia, M. Schmidt, and D. Normand, J. Phys. B 27, L123 (1994).

    Article  ADS  Google Scholar 

  19. J. H. Posthumus, J. Plumridge, M. K. Thomas, et al., J. Phys. B 31, L553 (1998).

    ADS  Google Scholar 

  20. M. Schmidt, D. Normand, and C. Cornaggia, Phys. Rev. A 50, 5037 (1994).

    Article  ADS  Google Scholar 

  21. T. D. G. Walsh, F. A. Ilkov, S. L. Chin, et al., Phys. Rev. A 58, 3922 (1998).

    Article  ADS  Google Scholar 

  22. Ph. Herring and C. Cornaggia, Phys. Rev. A 59, 2836 (1999).

    ADS  Google Scholar 

  23. A. Giusti-Suzor and Ch. Jungen, J. Chem. Phys. 80, 986 (1984).

    Article  ADS  Google Scholar 

  24. E. Charron and A. Suzor-Weiner, J. Chem. Phys. 108, 3922 (1998).

    Article  ADS  Google Scholar 

  25. T. Seideman, M. Yu. Ivanov, and P. B. Corkum, Phys. Rev. Lett. 75, 2819 (1995).

    Article  ADS  Google Scholar 

  26. T. Zuo and A. Bandrauk, Phys. Rev. A 51, R26 (1995).

    Article  ADS  Google Scholar 

  27. S. Chelcowski and A. Bandrauk, J. Phys. B 28, L723 (1995).

    ADS  Google Scholar 

  28. J. H. Posthumus, L. J. Fransinski, A. J. Giles, and K. Codling, J. Phys. B 28, L349 (1995).

    Article  ADS  Google Scholar 

  29. T. Yu and A. Bandrauk, Phys. Rev. A 56, 685 (1997).

    ADS  Google Scholar 

  30. A. M. Popov, O. V. Tikhonova, and E. A. Volkova, Laser Phys. 7, 108 (1997).

    Google Scholar 

  31. I. Last and J. Jortner, Phys. Rev. A 58, 3826 (1998).

    Article  ADS  Google Scholar 

  32. Y. Fyodorov and Y. Alhassid, Phys. Rev. A 58, R3375 (1998).

  33. J. H. Posthumus, J. Plumridge, L. J. Fransinski, et al., J. Phys. B 31, L985 (1998).

    ADS  Google Scholar 

  34. J. Grochmalicki, M. Lewenstein, and K. Rzazewski, Phys. Rev. Lett. 66, 1038 (1991).

    Article  ADS  Google Scholar 

  35. R. Grobe and C. K. Law, Phys. Rev. A 44, R4114 (1991).

  36. B. Sundaram and R. V. Jensen, Phys. Rev. A 47, 1415 (1993).

    Article  ADS  Google Scholar 

  37. F. Benvenuto, G. Casati, and D. L. Shepelyansky, Phys. Rev. A 47, R786 (1993).

    Article  ADS  Google Scholar 

  38. G. Casati, I. Guarneri, and G. Mantica, Phys. Rev. A 50, 5018 (1994).

    Article  ADS  Google Scholar 

  39. R. V. Karapetyan, Laser Phys. 10, 160 (2000).

    Google Scholar 

  40. M. Gavrila and J. Z. Kaminski, Phys. Rev. Lett. 52, 613 (1984).

    Article  ADS  Google Scholar 

  41. O. V. Smirnova, Zh. Éksp. Teor. Fiz. 117, 702 (2000) [JETP 90, 609 (2000)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 120, No. 2, 2001, pp. 333–339.

Original Russian Text Copyright © 2001 by Gridchin, Popov, Smirnova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gridchin, V.V., Popov, A.M. & Smirnova, O.V. Angular distributions of the fragments from coulomb explosions of diatomic molecules in intense laser fields. J. Exp. Theor. Phys. 93, 295–300 (2001). https://doi.org/10.1134/1.1402730

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1402730

Keywords

Navigation