Skip to main content
Log in

On the longitudinal stability of technogenic ionized formations

  • Experimental Instruments and Techniques
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A mechanism behind the longitudinal stability of technogenic ionized formations in air is considered. Air is ionized by radioactive emergency ejections from dangerous plants. The stability mechanism is based on cloud polarization when unlike heavy ions are separated under the action of the force of gravity. The longitudinal and transverse distributions of the heavy ions (charged water drops), as well as the distribution of their difference, calculated in a cylindrical coordinate system agree well with experimental data found in the literature. The reflection coefficient for electromagnetic waves reflected from an ionized air layer is derived. The wavelength dependence of the absolute value of the reflection coefficient is consistent with experimental and analytic data for the centimeter range of wavelengths. A range where the magnitude of the reflection coefficient sharply grows is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Elokhin and E. N. Kononov, At. Énerg. 80, 129 (1996).

    Google Scholar 

  2. A. N. Didenko, Yu. P. Usov, Yu. G. Yushkov, et al., At. Énerg. 80, 47 (1996).

    Google Scholar 

  3. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Nauka, Moscow, 1967; Pergamon, Oxford, 1970).

    Google Scholar 

  4. V. V. Smirnov, in Proceedings of the Institute of Experimental Meteorology, Vol. 19: Ecological-Geophysical Aspects of Nuclear Power Station Monitoring (Gidrometeoizdat, Moscow, 1992), pp. 45–60.

    Google Scholar 

  5. K. Kato, in Collection of Reports of Society of Earthquake Forecast (1984), No. 33, pp. 184–186.

  6. Ya. I. Frenkel’, Theory of Phenomena of Atmospheric Electricity (GITTL, Moscow, 1949).

    Google Scholar 

  7. G. A. Vorob’ev, Physics of Dielectrics, Strong Fields Region (Tomsk. Univ., Tomsk, 1977).

    Google Scholar 

  8. V. V. Smirnov in Proceedings of the Institute of Experimental Meteorology, Vol. 19: Ecological-Geophysical Aspects of Nuclear Power Stations Monitoring (Gidrometeoizdat, Moscow, 1992), pp. 111–122.

    Google Scholar 

  9. Calculation of Radioactive Material Propagation in the Environment and Radiation Dose for Population (MKhO Interatoménergo, Moscow, 1992), p. 59; p. 248.

  10. H. Kuchling, Physik (Fachbuchverlag, Leipzig, 1980; Mir, Moscow, 1982).

    Google Scholar 

  11. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1977).

    Google Scholar 

  12. É. Ya. Begun, E. S. Dmitriev, A. B. Ivanov, and G. P. Markov, in Radiation: Latent Ecological Problems (ANRI, 1998), No. 1, pp. 15–19.

  13. R. Holzer, in Nuclear Explosion in Space, on the Earth, and under Water (Voenizdat, Moscow, 1974), pp. 219–234.

    Google Scholar 

  14. L. M. Brekhovskikh, Waves in Layered Media (Nauka, Moscow, 1973; Academic, New York, 1980).

    Google Scholar 

  15. L. M. Brekhovskikh, Zh. Tekh. Fiz. 19, 1126 (1949).

    Google Scholar 

  16. P. H. van Cittert, Physica 6, 840 (1939).

    MATH  Google Scholar 

  17. K. A. Boyarchuk, E. N. Kononov, and G. A. Lyakhov, Pis’ma Zh. Tekh. Fiz. 19(6), 67 (1993) [Tech. Phys. Lett. 19, 184 (1993)].

    Google Scholar 

  18. N. G. Gusev, E. E. Kovalev, D. P. Osanov, and V. I. Popov, Radiation Protection against from Distant Source (Gosatomizdat, Moscow, 1961), Part II.

    Google Scholar 

  19. A. P. Elokhin, RF Inventor’s Certificate No. 2147137 (2000).

Download references

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 71, No. 8, 2001, pp. 98–108.

Original Russian Text Copyright © 2001 by Elokhin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elokhin, A.P. On the longitudinal stability of technogenic ionized formations. Tech. Phys. 46, 1026–1036 (2001). https://doi.org/10.1134/1.1395125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1395125

Keywords

Navigation