Skip to main content
Log in

Kinetic mechanisms for the initiation of supersonic combustion of a hydrogen-air mixture behind a shock wave under the excitation of molecular vibrations in initial reagents

  • Atoms, Spectra, Radiation
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Mechanisms for the initiation of autoignition in hydrogen-air mixtures in a supersonic flow behind a shock at temperatures ≤700 K when the H2 and N2 molecule vibration is selectively excited are considered. By exciting molecular vibration in the gases, one can initiate detonation combustion behind the shock front even at weak shocks at gas temperatures ≤500 K. It is established that even a small (<0.15%) amount of vibrationally excited ozone present in the reacting mixture may considerably shrink the induction zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Yip, AIAA Pap., No. 89-2567 (1989).

  2. N. G. Dautov and A. M. Starik, Fiz. Goreniya Vzryva 32(1), 94 (1996).

    Google Scholar 

  3. D. E. Gonzales, AIAA Pap., No. 96-4960 (1996).

  4. C. Li, K. Kailasanath, and E. S. Oran, Combust. Flame 108(1), 173 (1997).

    Article  Google Scholar 

  5. A. M. Starik and N. G. Dautov, Teplofiz. Vys. Temp. 34, 737 (1996).

    Google Scholar 

  6. M. J. Ostrander, J. C. Hyde, M. A. Young, and R. O. Kissinger, AIAA Pap., No. 87-2002 (1987).

  7. W. Chinits, AIAA Pap., No. 96-4536 (1996).

  8. O. Knab, T. H. Gogel, H. H. Frühauf, and E. W. Messerchmid, AIAA Pap., No. 95-0623 (1995).

  9. S. Losev, A. Sergievskaya, A. Starik, and N. Titova, AIAA Pap., No. 97-2532 (1997).

  10. N. M. Kuznetsov, Kinetics Monomolecular Reactions (Nauka, Moscow, 1982).

    Google Scholar 

  11. É. A. Kovach, S. A. Losev, and A. L. Sergievskaya, Khim. Fiz. 14(9), 44 (1995).

    Google Scholar 

  12. A. M. Starik and N. G. Dautov, Kinet. Katal. 37, 346 (1996).

    Google Scholar 

  13. Thermodynamical Properties of Individual Substances: A Handbook, Ed. by V. P. Glushko, L. V. Gurvich, G. A. Bergman, et al. (Nauka, Moscow, 1978, 1979), Vols. 1, 2.

    Google Scholar 

  14. F. J. Tanczaz, J. Chem. Phys. 25, 439 (1956).

    Google Scholar 

  15. R. C. Millikan and D. K. White, J. Chem. Phys. 39, 3209 (1963).

    Google Scholar 

  16. V. V. Lunin, M. P. Popovich, and S. N. Tkachenko, Physical Chemistry of Ozone (Mosk. Gos. Univ., Moscow, 1998).

    Google Scholar 

  17. K. S. Klopovskii, A. S. Kovalev, D. V. Lopaev, et al., Zh. Éksp. Teor. Fiz. 107, 1080 (1995) [JETP 80, 603 (1995)].

    Google Scholar 

  18. A. A. Vedenov, Physics of Electric Discharge CO 2 Lasers (Énergoizdat, Moscow, 1982).

    Google Scholar 

  19. N. G. Basov, V. A. Danilychev, V. A. Dolgikh, et al., Kvantovaya Élektron. (Moscow) 13, 1161 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 71, No. 8, 2001, pp. 1–12.

Original Russian Text Copyright © 2001 by Starik, Titova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starik, A.M., Titova, N.S. Kinetic mechanisms for the initiation of supersonic combustion of a hydrogen-air mixture behind a shock wave under the excitation of molecular vibrations in initial reagents. Tech. Phys. 46, 929–940 (2001). https://doi.org/10.1134/1.1395111

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1395111

Keywords

Navigation