Skip to main content
Log in

Critical behavior of dilute electrolyte solutions

  • Fluids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A theory of the critical behavior of a dilute ionic solution is constructed. An expression for the susceptibility in a wide temperature range is obtained. It is shown that ionic solutions belong to the universality class of the Ising model. The Ginzburg parameter of the ionic solutions decreases with the increase of the solvent concentration. In the general case, the critical exponent of susceptibility nonmonotonically depends on the temperature in the crossover region from the Ising-like to the mean-field behavior. In the vicinity of the transition point, the Debye-Hückel screening radius is proportional to the correlation length. As TT c, the screening radius tends to infinity and the screening disappears. The voltage between the two phases of the ionic solution is proportional to the order parameter and changes as |T/T c−1|β in the vicinity of the phase transition point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Domb and M. S. Green, Phase Transitions and Critical Phenomena (Academic, New York, 1974), Vol. 3.

    Google Scholar 

  2. A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1982, 2nd ed.; Pergamon, Oxford, 1979).

    Google Scholar 

  3. J. Rudnick and D. R. Nelson, Phys. Rev. B 13, 2208 (1976).

    Article  ADS  Google Scholar 

  4. J. F. Nicoll and P. C. Albright, Phys. Rev. B 31, 4576 (1985).

    Article  ADS  Google Scholar 

  5. S. Tang, J. V. Sengers, and Z. Y. Chen, Physica A (Amsterdam) 179, 344 (1991).

    ADS  Google Scholar 

  6. M. E. Fisher, J. Stat. Phys. 75, 1 (1994).

    Article  MATH  Google Scholar 

  7. G. Stell, J. Stat. Phys. 78, 197 (1995).

    Article  ADS  Google Scholar 

  8. J. M. H. Levelt Sengers and J. A. Given, J. Mol. Phys. 80, 899 (1993).

    Google Scholar 

  9. K. S. Pitzer, Acc. Chem. Res. 22, 333 (1990).

    Google Scholar 

  10. H. Weingartner, M. Kleemeier, S. Wiegand, and W. Schroer, J. Stat. Phys. 78, 169 (1995).

    Google Scholar 

  11. T. Narayan and K. S. Pitzer, Phys. Rev. Lett. 73, 3002 (1994).

    ADS  Google Scholar 

  12. T. Narayan and K. S. Pitzer, J. Phys. Chem. 98, 9170 (1994).

    Google Scholar 

  13. T. Narayan and K. S. Pitzer, J. Chem. Phys. 102, 8118 (1995).

    ADS  Google Scholar 

  14. J. Jacob, A. Kumar, M. Anisimov, et al., Phys. Rev. E 58, 2188 (1998).

    Article  ADS  Google Scholar 

  15. B. P. Lee and M. E. Fisher, Phys. Rev. Lett. 76, 2906 (1996).

    ADS  Google Scholar 

  16. M. E. Fisher and B. P. Lee, Phys. Rev. Lett. 77, 3561 (1996).

    Article  ADS  Google Scholar 

  17. B. P. Lee and M. E. Fisher, Europhys. Lett. 39, 611 (1997).

    Article  ADS  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

    Google Scholar 

  19. M. Yu. Belyakov, S. B. Kiselev, and A. R. Muratov, Zh. Éksp. Teor. Fiz. 104, 2785 (1993) [JETP 77, 279 (1993)].

    Google Scholar 

  20. M. A. Anisimov, J. Jacob, A. Kumar, et al., Phys. Rev. Lett. 85, 2336 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 120, No. 1, 2001, pp. 104–108.

Original English Text Copyright © 2001 by Muratov.

This article was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muratov, A.R. Critical behavior of dilute electrolyte solutions. J. Exp. Theor. Phys. 93, 89–93 (2001). https://doi.org/10.1134/1.1391523

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1391523

Keywords

Navigation