Skip to main content
Log in

Combustion of methane-oxygen and methane-oxygen-CFC mixtures initiated by a high-current slipping surface discharge

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from experimental studies of the destruction of chlorofluorocarbon (CF2Cl2) molecules in a methane-oxygen (air) gas mixture whose combustion is initiated by a high-current slipping surface discharge. It is found that a three-component CH4+O2(air)+CF2Cl2 gas mixture (even with a considerable amount of the third component) demonstrates properties of explosive combustion involving chain reactions that are typical of two-component CH4+O2 mixtures. Experiments show the high degree of destruction (almost complete decomposition) of chlorofluorocarbons contained in the mixture during one combustion event. The combustion dynamics is studied. It is shown that the combustion initiated by a slipping surface discharge has a number of characteristic features that make it impossible to identify the combustion dynamics with the formation of a combustion or detonation wave. The features of the effects observed can be related to intense UV radiation produced by a pulsed high-current surface discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Gritsinin, I. A. Kossyi, M. A. Misakyan, and V. P. Silakov, Fiz. Plazmy 23, 264 (1997) [Plasma Phys. Rep. 23, 242 (1997)].

    Google Scholar 

  2. Z. G. Akhvlediani, É. M. Barkhudarov, G. V. Gelashvili, et al., Fiz. Plazmy 22, 470 (1996) [Plasma Phys. Rep. 22, 428 (1996)].

    Google Scholar 

  3. É. M. Barkhudarov, N. K. Berezhetskaya, E. F. Bol’shakov, et al., Zh. Tekh. Fiz. 54, 1219 (1984) [Sov. Phys. Tech. Phys. 29, 701 (1984)].

    Google Scholar 

  4. A. M. Anpilov, E. M. Barkhudarov, N. K. Berezhetskaya, et al., Plasma Sources Sci. Technol. 7, 1 (1998).

    Article  Google Scholar 

  5. N. K. Berezhetskaya, E. F. Bol’shakov, S. K. Golubev, et al., Zh. Éksp. Teor. Fiz. 87, 1926 (1984) [Sov. Phys. JETP 60, 1108 (1984)].

    ADS  Google Scholar 

  6. I. A. Kossyi, K. V. Krasnobaev, I. V. Sokolov, and V. E. Terekhin, Kratk. Soobshch. Fiz., No. 11, 3 (1987).

  7. Yu. B. Bark, E. M. Barkhudarov, Yu. N. Kozlov, et al., J. Phys. D 33, 859 (2000).

    Article  ADS  Google Scholar 

  8. N. N. Semenov, Some Problems of Chemical Kinetics and Reactivity (Akad. Nauk SSSR, Moscow, 1958).

    Google Scholar 

  9. B. Lewis and G. Elbe, Combustion, Flames, and Explosions in Gases (Academic, New York, 1961; Mir, Moscow, 1968).

    Google Scholar 

  10. L. N. Khitrin, Physics of Combustion and Explosion (Mosk. Gos. Univ., Moscow, 1957).

    Google Scholar 

  11. V. S. Arutyunov and O. V. Krylov, Oxidative Transformations of Methane (Nauka, Moscow, 1998).

    Google Scholar 

  12. S. I. Gritsinin, I. A. Kossyi, V. P. Silakov, et al., Teplofiz. Vys. Temp. 24, 662 (1986).

    Google Scholar 

  13. G. A. Askar’yan, G. M. Batanov, S. I. Gritsinin, et al., in Microwave Plasma and Its Applications, Ed. by Yu. A. Lebedev (Moscow Physical Society, Moscow, 1995), p. 24.

    Google Scholar 

  14. I. I. Andreev, Zh. Russ. Fiz.-Khim. Obshch. 43, 1342 (1911).

    Google Scholar 

  15. A. B. Nalbandyan and V. V. Voevodskii, Mechanisms for Oxidation and Combustion of Hydrogen (Akad. Nauk SSSR, Moscow, 1949).

    Google Scholar 

  16. G. I. Kozlov, V. A. Kuznetsov, and A. D. Sokurenko, Pis’ma Zh. Tekh. Fiz. 17 (11), 25 (1991) [Sov. Tech. Phys. Lett. 17, 398 (1991)].

    Google Scholar 

  17. E. S. Shchetinkov, Physics of Gas Combustion (Nauka, Moscow, 1965).

    Google Scholar 

  18. H. Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  19. D. L. Baulch, R. A. Cox, P. J. Crutzen, et al., J. Phys. Chem. Ref. Data 11, 327 (1982).

    ADS  Google Scholar 

  20. A. M. Pravilov, in Plasma Chemistry, Ed. by B. M. Smirnov (Énergoatomizdat, Moscow, 1987), Vol. 14, p. 65.

    Google Scholar 

  21. V. D. Rusanov and A. A. Fridman, Physics of Chemically Active Plasmas (Nauka, Moscow, 1984).

    Google Scholar 

  22. É. L. Aleksandrov, Yu. A. Izraél’, I. L. Karol’, and A. Kh. Khrgian, Earth’s Ozone Layer and Its Variations (Gidrometeoizdat, St. Petersburg, 1992).

    Google Scholar 

  23. D. I. Slovetskii, Mechanisms for Chemical Reactions in Nonequilibrium Plasmas (Nauka, Moscow, 1980).

    Google Scholar 

  24. V. N. Kondrat’ev and E. E. Nikitin, Kinetics and Mechanism of Gasophase Reactions (Nauka, Moscow, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 27, No. 8, 2001, pp. 757–768.

Original Russian Text Copyright © 2001 by Kossy\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Silakov, Tarasova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kossyi, I.A., Silakov, V.P. & Tarasova, N.M. Combustion of methane-oxygen and methane-oxygen-CFC mixtures initiated by a high-current slipping surface discharge. Plasma Phys. Rep. 27, 715–725 (2001). https://doi.org/10.1134/1.1390543

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1390543

Keywords

Navigation