Skip to main content
Log in

Simulation of ethylene conversion initiated by a streamer corona in an air flow

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The conversion of ethylene (C2H4) at concentrations of 400 and 930 ppm in an air flow at a temperature of 295 K is simulated. Ethylene is added to air either upstream of the discharge chamber or in the reaction tube, downstream of a pulsed corona discharge. It is taken into account that the distribution of the gas components in the discharge zone is nonuniform due to the streamer nature of the discharge. In the reaction tube, all of the components are assumed to be uniform. Simulation results agree with the experiments carried out at voltage pulse amplitudes of 30 and 40 kV, a gas flow rate of 2–10 l/min, and a specific energy deposition of up to 0.15 J/cm3. It is shown that the ozone produced plays a governing role in the C2H4 conversion. It is found that it is possible to minimize the energy spent on conversion by choosing the optimum pulse repetition rate and the specific energy deposited per pulse. The presence of water vapor impedes the ethylene conversion and increases the concentration of formaldehyde and methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.-P. Francke and R. Rudolph, in Proceedings of the XII International Conference on Gas Discharges and Their Applications, Greifswald, 1997, Vol. 1, p. 397.

  2. S. Broer, Th. Hammer, and T. Kishimoto, in Proceedings of the XII International Conference on Gas Discharges and Their Applications, Greifswald, 1997, Vol. 1, pp. 188, 192.

  3. W. Niessen, O. Wolf, R. Schruft, and M. Neiger, J. Phys. D 31, 542 (1998).

    Article  ADS  Google Scholar 

  4. J. Chae, S. Moon, H. Sun, et al., in Proceedings 14th International Symposium on Plasma Chemistry, Prague, 1999, p. 2587.

  5. R. H. Amirov, E. I. Asinovsky, I. S. Samoilov, and A. V. Shepelin, in Proceedings of the 2nd International Conference on Applied Electrostatics, Beijing, 1993.

  6. B. M. Zlotopol’skii and T. S. Smolenskaya, Khim. Fiz. 16 (8), 105 (1997).

    Google Scholar 

  7. K.-P. Francke and R. Rudolph, Nichtthermischer Plasmareaktor zum Abbau fluchtiger Kohlenwasserstoffe aus industriellen Prozessgasen, Projekt der Deutschen Bundesstiftung Umwelt, 1996–1999.

  8. M. Bartels, K. Hoyermann, and R. Sievert, in Proceedings of the 19th International Symposium on Combustion, Combustion Institute, 1982, p. 61.

  9. C. K. Westbrook, F. L. Dryer, and K. P. Schug, in Proceedings of the 19th International Symposium on Combustion, Combustion Institute, 1982, p. 153.

  10. R. Atkinson, J. Phys. Chem. Ref. Data 26, 215 (1997).

    ADS  Google Scholar 

  11. J. J. Orlando, G. S. Tyndall, M. Bilde, et al., J. Phys. Chem. A 102, 8116 (1998).

    Article  Google Scholar 

  12. M. B. Zheleznyak and E. A. Filimonova, Teplofiz. Vys. Temp. 36, 374 (1998).

    Google Scholar 

  13. M. B. Zheleznyak and E. A. Filimonova, Teplofiz. Vys. Temp. 36, 557 (1998).

    Google Scholar 

  14. R. Kh. Amirov, Yu. N. Desyaterik, M. B. Zheleznyak, et al., Fiz. Plazmy 24, 1141 (1998) [Plasma Phys. Rep. 24, 1066 (1998)].

    Google Scholar 

  15. E. A. Filimonova, R. H. Amirov, H. T. Kim, and I. H. Park, J. Phys. D 33, 1716 (2000).

    Article  ADS  Google Scholar 

  16. R. Kh. Amirov, M. B. Zheleznyak, and E. A. Filimonova, Preprint No. 1-403 (Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 1997).

  17. N. Yu. Babaeva and G. V. Naidis, IEEE Trans. Plasma Sci. 26, 41 (1998).

    Article  Google Scholar 

  18. B. M. Penetrante, in Non-Thermal Plasma Techniques for Pollution Control, Ed. by B. M. Penetrante and S. E. Schultheis (Springer-Verlag, Berlin, 1993); NATO ASI Ser., Ser. G 34, 65 (1993).

    Google Scholar 

  19. Y. L. M. Creyghton, E. M. van Veldhuizen, and W. R. Rutgers, in Non-Thermal Plasma Techniques for Pollution Control, Ed. by B. M. Penetrante and S. E. Schultheis (Springer-Verlag, Berlin, 1993); NATO ASI Ser., Ser. G 34, 205 (1993).

    Google Scholar 

  20. D. L. Baulch, D. J. Cobos, R. A. Cox, et al., J. Phys. Chem. Ref. Data 21, 411 (1992).

    ADS  Google Scholar 

  21. R. Atkinson, D. L. Baulch, R. A. Cox, et al., J. Phys. Chem. Ref. Data 21, 1125 (1992).

    ADS  Google Scholar 

  22. E. A. Filimonova, R. Kh. Amirov, H. T. Kim, and I. H. Park, Khim. Fiz. 19 (9), 72 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 27, No. 8, 2001, pp. 750–756.

Original Russian Text Copyright © 2001 by Filimonova, Amirov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filimonova, E.A., Amirov, R.K. Simulation of ethylene conversion initiated by a streamer corona in an air flow. Plasma Phys. Rep. 27, 708–714 (2001). https://doi.org/10.1134/1.1390542

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1390542

Keywords

Navigation