Skip to main content
Log in

Application of the matrizant method to calculate the third-order aberration coefficients for a sector magnetic field including fringing-field effects

  • Electron and Ion Beams, Accelerators
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The matrizant method is used to study the nonlinear dynamics of charged particles in magnetic sector analyzers. The calculations of matrizants (transfer matrices) allow for both fringing-field effects due to the stray field and higher harmonics of the sector magnetic field (up to the third order). For the rectangular distribution of the field components along the optical axis, analytical expressions for the aberration coefficients (including dispersion ones) are derived up to the third order. In the simulation of real fields with a nonzero stray-field width, the smooth distribution of the field components is employed. The aberration coefficients for this distribution were calculated by means of a conservative numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Dymnikov and R. Hellborg, Nucl. Instrum. Methods Phys. Res. A 330, 323 (1993).

    ADS  Google Scholar 

  2. V. Brazhnik, V. Khomenko, S. Lebed, and A. Ponomarev, Nucl. Instrum. Methods Phys. Res. B 104, 69 (1995).

    ADS  Google Scholar 

  3. V. Brazhnik, S. Lebed, W. Kwiatek, et al., Nucl. Instrum. Methods Phys. Res. B 130, 104 (1997).

    Article  ADS  Google Scholar 

  4. A. D. Dymnikov et al., Nucl. Instrum. Methods Phys. Res. A 403, 195 (1998).

    Article  ADS  Google Scholar 

  5. A. H. Azbaid, A. D. Dymnikov, and G. Martinez, Nucl. Instrum. Methods Phys. Res. B 158, 61 (1999).

    Article  ADS  Google Scholar 

  6. A. D. Dymnikov, Nucl. Instrum. Methods Phys. Res. A 363, 435 (1995).

    ADS  Google Scholar 

  7. K. L. Brown et al., Rev. Sci. Instrum. 35, 481 (1964).

    Article  Google Scholar 

  8. A. S. Kuzema, O. R. Savin, and I. Ya. Chertkov, Analyzers for Magnetic Mass Spectrometers (Naukova Dumka, Kiev, 1987).

    Google Scholar 

  9. H. Matsuda and H. Wollnik, Nucl. Instrum. Methods 77, 283 (1970).

    Google Scholar 

  10. Y. Fujita, H. Matsuda, and T. Matsuo, Nucl. Instrum. Methods 144, 279 (1977).

    Article  Google Scholar 

  11. M. Szilagyi, Electron and Ion Optics (Plenum, New York, 1988; Mir, Moscow, 1990).

    Google Scholar 

  12. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961; Nauka, Moscow, 1968).

    Google Scholar 

  13. S. N. Mordik and A. G. Ponomarev, Zh. Tekh. Fiz. 71(4), 105 (2001) [Tech. Phys. 46, 466 (2001)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 71, No. 7, 2001, pp. 98–105.

Original Russian Text Copyright © 2001 by Mordik, Ponomarev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mordik, S.N., Ponomarev, A.G. Application of the matrizant method to calculate the third-order aberration coefficients for a sector magnetic field including fringing-field effects. Tech. Phys. 46, 883–891 (2001). https://doi.org/10.1134/1.1387552

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1387552

Keywords

Navigation