Skip to main content
Log in

Gas dynamics and thermal-ionization instability of the cathode region of a glow discharge. Part II

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The influence of the gas flow structure in the cathode sheath of a glow discharge on the discharge stability is studied numerically. The electric parameters are calculated in a diffusion-drift model that consistently takes into account associative dissociation as an additional electron source. The model also includes equations describing both the thermal mode of the cathode and the nonequilibrium physicochemical gas dynamics of a moderately rarefied gas. It is shown that, in a pulsed discharge, the increasing branch of the current-voltage characteristic, which is associated with the gas rarefaction behind the cathode shock wave, can change to a descending branch associated with the intensification of associative ionization. This gives rise to cathode sheath instability. The results of calculations agree well with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Smirnov and G. A. Baranov, Zh. Tekh. Fiz. 71(7), 30 (2001) [Tech. Phys. 46, 815 (2001)].

    Google Scholar 

  2. R. B. Baksht, Yu. D. Korolev, and G. A. Mesyats, Fiz. Plazmy 3, 653 (1977) [Sov. J. Plasma Phys. 3, 369 (1977)].

    Google Scholar 

  3. Yu. D. Korolev and G. A. Mesyats, The Physics of Pulsed Gas Breakdown (Nauka, Moscow, 1991).

    Google Scholar 

  4. Yu. P. Raizer and S. T. Surzhikov, Preprint No. 304, IPM Akad. Nauk SSSR (Moscow, 1987).

  5. G. V. Gadiyak, V. A. Shveigert, and O. U. Uuémaa, Izv. Sib. Otd. Akad. Nauk SSSR 21(6), 41 (1988).

    Google Scholar 

  6. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  7. C. Barbeau and J. Jolly, Appl. Phys. Lett. 58, 237 (1991).

    Article  ADS  Google Scholar 

  8. V. V. Osipov, V. V. Savin, and V. A. Tel’nov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 12, 52 (1976).

  9. S. V. Pashkin and P. I. Peretyat’ko, Kvantovaya Élektron. (Moscow) 5, 1159 (1991).

    Google Scholar 

  10. S. A. Smirnov, in Proceedings of the Conference “Physics and Technique of Plasma,” Minsk, 1994, Part 1, p. 168.

  11. A. M. Dykhne and A. P. Napartovich, Dokl. Akad. Nauk SSSR 247, 837 (1979) [Sov. Phys. Dokl. 24, 632 (1979)].

    Google Scholar 

  12. S. Ya. Bronin, V. M. Kolobov, V. N. Sushkin, et al., Teplofiz. Vys. Temp. 18, 46 (1980).

    Google Scholar 

  13. M. M. Keker, M. R. Barrant, and J. D. Craggs, J. Phys. D 5, 253 (1972).

    ADS  Google Scholar 

  14. Yu. S. Akishev, A. P. Napartovich, S. V. Pashkin, et al., Teplofiz. Vys. Temp. 22, 201 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 71, No. 7, 2001, pp. 39–43.

Original Russian Text Copyright © 2001 by Smirnov, Baranov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnov, S.A., Baranov, G.A. Gas dynamics and thermal-ionization instability of the cathode region of a glow discharge. Part II. Tech. Phys. 46, 825–830 (2001). https://doi.org/10.1134/1.1387541

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1387541

Keywords

Navigation