Skip to main content
Log in

Abstract

A two-dimensional low-density system of charge carriers with strong Coulomb interaction, which can lead to the appearance of a short-wavelength soft mode (precursor of crystallization) is examined. This system provides elementary excitations of two types: Fermi excitations and Bose excitations with a gap in the spectrum. The latter excitations are similar to rotons in superfluid helium. A model involving the Fermi liquid and the soft mode is proposed, and interaction of different excitations with each other is described phenomenologically as in the Landau theory of Fermi liquid. By solving the derived equations, it was found that, as the temperature increases, the effective mass of Fermi excitations decreases and the gap in the Bose excitation spectrum increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Kravchenko et al., Phys. Rev. B 50, 8039 (1994); 51, 7038 (1995); Phys. Rev. Lett. 77, 4938 (1996).

    Article  ADS  Google Scholar 

  2. Y. Hanein, U. Meirav, D. Shahar, et al., Phys. Rev. Lett. 80, 1288 (1998).

    Article  ADS  Google Scholar 

  3. S. J. Papadakis and M. Shayegan, Phys. Rev. B 57, R15068 (1998).

  4. Jongsoo Yoon, C. C. Li, D. C. Tsui, and M. Shayegan, Phys. Rev. Lett. 84, 4421 (2000).

    Article  ADS  Google Scholar 

  5. S. C. Dultz and H. W. Jiang, Phys. Rev. Lett. 84, 4689 (2000).

    Article  ADS  Google Scholar 

  6. V. Senz, T. Ihn, T. Heinzel, et al., Phys. Rev. Lett. 85, 4357 (2000).

    Article  ADS  Google Scholar 

  7. L. Moldovan, S. Melinte, V. Bayot, et al., Phys. Rev. Lett. 85, 4369 (2000).

    Article  ADS  Google Scholar 

  8. E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod. Phys. 73, 251 (2001).

    Article  ADS  Google Scholar 

  9. V. M. Pudalov, Pis’ma Zh. Éksp. Teor. Fiz. 66, 168 (1997) [JETP Lett. 66, 175 (1997)].

    Google Scholar 

  10. B. L. Altshuler and D. L. Maslov, Phys. Rev. Lett. 82, 145 (1999).

    Article  ADS  Google Scholar 

  11. É. G. Batyev, Pis’ma Zh. Éksp. Teor. Fiz. 72, 727 (2000) [JETP Lett. 72, 506 (2000)].

    Google Scholar 

  12. É. G. Batyev and L. S. Braginsky, Zh. Éksp. Teor. Fiz. 87, 1361 (1984) [Sov. Phys. JETP 60, 781 (1984)].

    Google Scholar 

  13. É. G. Batyev, Zh. Éksp. Teor. Fiz. 70, 578 (1976) [Sov. Phys. JETP 43, 300 (1976)].

    Google Scholar 

  14. A. M. Dyugaev, Zh. Éksp. Teor. Fiz. 70, 2390 (1976) [Sov. Phys. JETP 43, 1247 (1976)].

    Google Scholar 

  15. B. Spivak, cond-mat/0005328.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 73, No. 10, 2001, pp. 635–639.

Original Russian Text Copyright © 2001 by Batyev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batyev, É.G. A model of Wigner liquid. Jetp Lett. 73, 566–569 (2001). https://doi.org/10.1134/1.1387529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1387529

PACS numbers

Navigation