Skip to main content
Log in

Effect of acoustic nonlinearity on heating of biological tissue by high-intensity focused ultrasound

  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Effect of strong acoustic nonlinearity on the efficiency of heating of a biological tissue by high-intensity focused ultrasound in the modes of operation used in real clinical setups is studied. The spatial distributions of thermal sources and the corresponding temperature increments caused by ultrasonic absorption are analyzed. Numerical algorithms are developed for simulating the nonlinear focusing of ultrasound in the calculations of both the heat sources on the basis of the Khokhlov-Zabolotskaya-Kuznetsov-type equations and the temperature field in a tissue on the basis of an inhomogeneous thermal conduction equation with a relaxation term. It is demonstrated that in the mode of operation typical of acoustic surgery, the nonlinearity improves the locality of heating and leads to an increase in the power of thermal sources in the focus by approximately an order of magnitude. The diffusion phenomena in the tissue lead to a smoothing of the spatial temperature distributions, as compared to the distributions of thermal sources. In the case of one-second exposure in the nonlinear mode of focusing, the maximal temperature in the focus exceeds the values obtained in the approximation of linear wave propagation by a factor of three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Webster, Wiley Encyclopedia of Electrical and Electronics Engineering (Wiley, 1999), pp. 368–386.

  2. Physical Principles of Medical Ultrasonics, Ed. by C. R. Hill (Ellis Horwood, Chichester, 1986; Mir, Moscow, 1989).

    Google Scholar 

  3. G. R. Ter Haar, I. H. Rivens, E. Moskovic, et al., Proc. SPIE 3249, 270 (1998).

    ADS  Google Scholar 

  4. J. Y. Chapelon and D. Cathignol, in Advances in Nonlinear Acoustics: Proceedings of the 13th International Symposium on Nonlinear Acoustics (Bergen, Norway, 1993), pp. 21–29.

  5. M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics (Academic, Boston, 1998), p. 139.

    Google Scholar 

  6. V. A. Khokhlova, O. A. Sapozhnikov, and L. A. Crum, J. Acoust. Soc. Am. 102, 3155 (1997).

    Article  ADS  Google Scholar 

  7. P. Meaney, M. D. Cahill, and Gail ter Haar, Proc. SPIE 3249, 246 (1998).

    ADS  Google Scholar 

  8. F. P. Curra, P. D. Mourad, V. A. Khokhlova, and L. A. Crum, in Proceedings of the IEEE International Ultrasonics Symposium (Sendai, Japan, 1998), pp. 1419–1422.

  9. N. S. Bakhvalov, Ya. M. Zhileikin, and E. A. Zabolotskaya, Nonlinear Theory of Sound Beams (Nauka, Moscow, 1982; AIP, New York, 1987).

    Google Scholar 

  10. Y. S. Lee and M. F. Hamilton, J. Acoust. Soc. Am. 97, 906 (1995).

    ADS  Google Scholar 

  11. J. Tavakkoli, D. Cathignol, R. Souchon, and O. A. Sapozhnikov, J. Acoust. Soc. Am. 104, 2061 (1998).

    Article  ADS  Google Scholar 

  12. Tjotta Naze, S. Tjotta, and E. H. Vefring, J. Acoust. Soc. Am. 88, 2859 (1990).

    ADS  Google Scholar 

  13. T. S. Hart and M. F. Hamilton, J. Acoust. Soc. Am. 84, 1488 (1988).

    Article  ADS  Google Scholar 

  14. P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488 (1991).

    ADS  Google Scholar 

  15. Yu. A. Pishchal’nikov, O. A. Sapozhnikov, and V. A. Khokhlova, Akust. Zh. 42, 412 (1996) [Acoust. Phys. 42, 362 (1996)].

    Google Scholar 

  16. V. A. Khokhlova, M. A. Averkiou, S. J. Younghouse, M. F. Hamilton, and L. A. Crum, in Proceedings of 16th ICA/135th ASA Meeting (Seattle, USA, 1998), Vol. 4, p. 2875.

    Google Scholar 

  17. S. S. Kashcheeva, V. A. Khokhlova, O. A. Sapozhnikov, et al., Akust. Zh. 46, 211 (2000) [Acoust. Phys. 46, 170 (2000)].

    Google Scholar 

  18. V. M. Paskonov, V. I. Polezhaev, and L. A. Chudov, Numerical Simulation of the Processes of Heat and Mass Transfer (Nauka, Moscow, 1984).

    Google Scholar 

  19. W. L. Nyborg, Phys. Med. Biol. 33, 785 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Akusticheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 47, No. 4, 2001, pp. 541–549.

Original Russian Text Copyright © 2001 by Filonenko, Khokhlova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filonenko, E.A., Khokhlova, V.A. Effect of acoustic nonlinearity on heating of biological tissue by high-intensity focused ultrasound. Acoust. Phys. 47, 468–475 (2001). https://doi.org/10.1134/1.1385422

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1385422

Keywords

Navigation