Skip to main content
Log in

On the possibility of suppressing the saturation of photoelectric amplification of weak optical emission in semiconductors by forming near-contact variband layers

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

It is demonstrated that saturation of the photoelectric amplification coefficient G with increasing voltage V applied to a sample can be suppressed by introducing a variband layer near a current contact to which the minority charge carriers are driven by the electric field. This effect is considered in the case of interband photogeneration and recombination mechanisms operative, for example, in CdHgTe-based materials widely used for detecting weak emission in the wavelength intervals of λ=8–12 and 3–5 μm [1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski et al., Infrared Photon Detectors (SPIE Opt. Engin. Press, Bellingham, 1995).

    Google Scholar 

  2. Y. J. Shacham-Diamand and I. Kidron, Infrared Phys. 21, 105 (1981).

    Article  ADS  Google Scholar 

  3. Optical and Infrared Detectors, Ed. by R. J. Keyes (Springer-Verlag, New York, 1977; Radio i Svyaz’, Moscow, 1985).

    Google Scholar 

  4. D. L. Smith, F. K. Lo, and J. D. Genova, J. Vac. Sci. Technol. 21(1), 259 (1982).

    Article  Google Scholar 

  5. C. T. Elliot, in Handbook on Semiconductors, Ed. by C. Hilsum (North-Holland, Amsterdam, 1982), Vol. 4, pp. 727–798.

    Google Scholar 

  6. H. Beneking, IEEE Trans. Electron Devices ED-29(9), 1420 (1982).

    ADS  Google Scholar 

  7. R. A. Smith, Semiconductors (Cambridge Univ. Press, Cambridge, 1978; Mir, Moscow, 1982).

    Google Scholar 

  8. V. L. Bonch-Bruevich and S. G. Kalashnikov, Physics of Semiconductors (Nauka, Moscow, 1990).

    Google Scholar 

  9. E. S. Rittner, in Proceedings of the 1st Photoconductivity Conference, Atlantic City, 1954 (Wiley, New York, 1956), pp. 215–268.

    Google Scholar 

  10. J. S. Blakemore, Semiconductor Statistics (Pergamon, Oxford, 1962; Mir, Moscow, 1964).

    Google Scholar 

  11. G. E. Pikus, Fundamentals of Theory of Semiconductor Devices (Nauka, Moscow, 1965).

    Google Scholar 

  12. R. H. Bube, Photoelectronic Properties of Semiconductors (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  13. S. M. Ryvkin, Photoelectric Effects in Semiconductors (Fizmatgiz, Leningrad, 1963; Consultants Bureau, New York, 1964).

    Google Scholar 

  14. I. Auth, D. Genzow, K. Herrmann, Photoelektrische Erscheinungen (Akademie-Verlag, Berlin, 1977; Mir, Moscow, 1980).

    Google Scholar 

  15. A. M. Vasil’ev and A. P. Landsman, Semiconductor Photoconverters (Sov. Radio, Moscow, 1971).

    Google Scholar 

  16. P. R. Emtage, J. Appl. Phys. 33(6), 1950 (1962).

    Article  Google Scholar 

  17. L. J. van Ruyvent and F. E. Williams, Am. J. Phys. 35(7), 705 (1967).

    Google Scholar 

  18. T. Gora and F. Williams, Phys. Rev. 177(3), 1179 (1969).

    Article  ADS  Google Scholar 

  19. P. Migliorato and A. White, Solid-State Electron. 26(1), 65 (1983).

    Article  ADS  Google Scholar 

  20. D. L. Smith, Appl. Phys. Lett. 45(1), 83 (1984).

    Article  ADS  Google Scholar 

  21. V. G. Savitskii and B. S. Sokolovskii, Fiz. Tekh. Poluprovodn. (St. Petersburg) 31(1), 3 (1997) [Semiconductors 31, 1 (1997)].

    Google Scholar 

  22. V. A. Kholodnov, Proc. SPIE 3819, 98 (1999).

    ADS  Google Scholar 

  23. V. A. Kholodnov and A. A. Drugova, Pis’ma Zh. Tekh. Fiz. 23(2), 80 (1997) [Tech. Phys. Lett. 23, 82 (1997)].

    Google Scholar 

  24. V. A. Kholodnov, Pis’ma Zh. Éksp. Teor. Fiz. 67(9), 655 (1998) [JETP Lett. 67, 685 (1998)].

    Google Scholar 

  25. V. A. Kholodnov and A. A. Drugova, Proc. SPIE 3819, 67 (1999).

    ADS  Google Scholar 

  26. V. A. Kholodnov and A. A. Drugova, Pis’ma Zh. Tekh. Fiz. 26(5), 49 (2000) [Tech. Phys. Lett. 26, 202 (2000)].

    Google Scholar 

  27. V. A. Kholodnov and A. A. Drugova, Proc. SPIE 4340, 29 (2000).

    Google Scholar 

  28. V. A. Kholodnov, A. A. Drugova, and N. E. Kurochkin, in Abstracts of the 25th International Conference of the Physics of Semiconductors, 25 ICPS, Osaka, 2000, Part I, p. 239.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 27, No. 12, 2001, pp. 42–50.

Original Russian Text Copyright © 2001 by Kholodnov, Drugova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kholodnov, V.A., Drugova, A.A. On the possibility of suppressing the saturation of photoelectric amplification of weak optical emission in semiconductors by forming near-contact variband layers. Tech. Phys. Lett. 27, 504–507 (2001). https://doi.org/10.1134/1.1383839

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1383839

Keywords

Navigation