Skip to main content
Log in

Structure of conduction channels in superionic conductors: Crystallochemical modeling

  • Crystal Chemistry
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The experimental and theoretical studies of the structure of conduction channels of superionic conductors are analyzed. A crystallochemical method of modeling the conduction channels is proposed in which they are treated as sets of polyhedron Vorono-Dirichlet sections outside of impenetrable spheres of the rigid sublattice. The allowance for both weak flexibility of the spheres and their mean-square displacements relative to the sublattice points yields a channel structure that “wraps” around the Vorono-Dirichlet polyhedron edges. Modeling the interionic potential for α-AgI with the help of equipotential surfaces suggests that the mobile-ion motion slips along the conduction channel walls. For α-AgI, the set of the equipotential surfaces specifies “the minimum energy trajectory” of transition into a superionic state, while the crystallochemical “wrapping” structure corresponds to a saddle point of a multidimensional potential surface. Symmetry selection rules are used for predicting mechanical trajectories as allowed oscillation modes for the tetrahedral and octahedral fragments of α-CuI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Boys and T. M. Hayes, in Physics of Superionic Conductors, Ed. by M. B. Salamon (Springer-Verlag, Berlin, 1979; Zinatne, Riga, 1982).

    Google Scholar 

  2. S. M. Shapiro and F. Reidinger, in Physics of Superionic Conductors, Ed. by M. B. Salamon (Springer-Verlag, Berlin, 1979; Zinatne, Riga, 1982).

    Google Scholar 

  3. H. U. Beyeler, P. Brüesch, L. Pietronero, et al., in Physics of Superionic Conductors, Ed. by M. B. Salamon (Springer-Verlag, Berlin, 1979; Zinatne, Riga, 1982).

    Google Scholar 

  4. T. Geisel, in Physics of Superionic Conductors, Ed. by M. B. Salamon (Springer-Verlag, Berlin, 1979; Zinatne, Riga, 1982).

    Google Scholar 

  5. V. I. Polyakov, Zh. Fiz. Khim. 71(7), 1248 (1997); 72 (11), 2002 (1998); 72 (12), 2247 (1998).

    Google Scholar 

  6. L. W. Strock, Z. Phys. Chem., Abt. B 25, 441 (1934); 31, 132 (1936).

    Google Scholar 

  7. W. Bührer and W. Hälg, Helv. Phys. Acta 47, 27 (1974).

    Google Scholar 

  8. R. J. Cava, F. Reidinger, and B. J. Wuensch, Solid State Commun. 24, 411 (1977).

    Article  Google Scholar 

  9. H. G. Schnering and R. Nesper, Angew. Chem. Int. Ed. Engl. 26, 1059 (1987).

    Google Scholar 

  10. J. B. Boyce, T. M. Hayes, J. C. Mikkelsen, et al., Solid State Commun. 33, 183 (1980).

    Article  Google Scholar 

  11. W. Bührer and W. Hälg, Electrochim. Acta 22, 701 (1977).

    Google Scholar 

  12. Y. Kaneko, A. Ueda, and Y. Hiwatari, J. Phys. Soc. Jpn. 55(4), 1244 (1986).

    Article  Google Scholar 

  13. G. Dalba, P. Fornasini, R. Gotter, et al., Philos. Mag. B 71(4), 751 (1995).

    Google Scholar 

  14. V. I. Polyakov, Zh. Fiz. Khim. 73(9), 1601 (1999).

    Google Scholar 

  15. S. Glasstone, K. J. Laidler, and H. Eyring, Theory of Rate Processes (McGraw-Hill, New York, 1941; Inostrannaya Literatura, Moscow, 1948).

    Google Scholar 

  16. R. Bachmann and H. Schulz, Solid State Ionics 9/10, 521 (1983).

    Google Scholar 

  17. R. Pearson, Symmetry Rules for Chemical Reactions (Academic, New York, 1976; Mir, Moscow, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kristallografiya, Vol. 46, No. 3, 2001, pp. 485–493.

Original Russian Text Copyright © 2001 by Polyakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyakov, V.I. Structure of conduction channels in superionic conductors: Crystallochemical modeling. Crystallogr. Rep. 46, 435–443 (2001). https://doi.org/10.1134/1.1376474

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1376474

Keywords

Navigation