Skip to main content
Log in

New recursive solution of the problem of scattering of electromagnetic radiation by multilayer spheroidal particles

  • Physical and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A new recursive algorithm for the solution of the problem of scattering of light (of an arbitrarily polarized plane electromagnetic wave) by multilayer confocal spheroidal particles is constructed. This approach preserves the advantages of the two approaches proposed earlier by us for single-layer and two-layer spheroids (special choice of scalar potentials and utilization of the basis of wave spheroidal harmonics) and for homogeneous axially symmetric particles (formulation of the problem in terms of surface integral equations, calculation of the potentials inside the particle from the potentials of the incident radiation, and calculation of the potentials of the scattered radiation from the potentials inside the particle). In the case of multilayer particles, the potential inside each shell is a sum of two terms. The first has the properties of the incident radiation (no singularities inside the volume enclosed by the external boundary of the shell), whereas the second term has the properties of the scattered radiation (satisfies the radiation conditions at infinity). Therefore, as the calculation progresses from one layer to the next (from the core to the outer shell), the dimensionality of the reduced linear matrix equations for the unknown expansion coefficients of the scattered field potentials does not increase with respect to the case of a homogeneous spheroid. The algorithm is particularly simple and lucid (as far as possible for such a complex problem). In the case of spherical multilayer particles, the solution can be found explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  2. O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystalline Clouds (Gidrometeoizdat, Leningrad, 1984).

    Google Scholar 

  3. V. N. Lopatin and F. Ya. Sid’ko, Introduction to the Optics of Cell Suspensions (Nauka, Novosibirsk, 1988).

    Google Scholar 

  4. T. Onaka, Ann. Tokyo Astron. Obs. 18, 1 (1980).

    ADS  Google Scholar 

  5. M. F. R. Cooray and I. R. Ciric, J. Electromagn. Waves Appl. 6, 1491 (1992).

    Article  Google Scholar 

  6. V. G. Farafonov, Opt. Spektrosk. 76, 87 (1994) [Opt. Spectrosc. 76, 79 (1994)].

    ADS  Google Scholar 

  7. V. G. Farafonov, N. V. Voshchinnikov, and V. V. Somsikov, Appl. Opt. 35, 5412 (1996).

    ADS  Google Scholar 

  8. B. Peterson and S. Strim, Phys. Rev. D 10, 2670 (1974).

    Article  ADS  Google Scholar 

  9. D.-S. Wang and P. W. Barber, Appl. Opt. 18, 1190 (1979).

    Article  ADS  Google Scholar 

  10. Light Scattering by Non-spherical Particles, Ed. by M. I. Mishchenko, J. W. Hovenier, and L. D. Trayis (Academic, New York, 2000).

    Google Scholar 

  11. V. G. Farafonov, Dif. Uravn. 19, 1765 (1983).

    MathSciNet  Google Scholar 

  12. N. V. Voshchinnikov, J. Quant. Spectrosc. Radiat. Transf. 55, 627 (1996).

    Article  ADS  Google Scholar 

  13. I. Gurwich, M. Kleiman, N. Shiloag, and A. Cohen, Appl. Opt. 39, 470 (2000).

    Article  ADS  Google Scholar 

  14. Z. S. Wu and Y. P. Wang, Radio Sci. 26, 1393 (1991).

    Article  ADS  Google Scholar 

  15. V. G. Farafonov, Opt. Spektrosk. 88, 70 (2000) [Opt. Spectrosc. 88, 63 (2000)].

    ADS  Google Scholar 

  16. V. G. Farafonov, V. B. Il’in, and T. Henning, J. Quant. Spectrosc. Radiat. Transf. 63, 205 (1999).

    Article  ADS  Google Scholar 

  17. N. V. Voshchinnikov and V. G. Farafonov, Astrophys. Space Sci. 204, 19 (1993).

    Article  ADS  Google Scholar 

  18. V. G. Farafonov and N. V. Voshchinnikov, Opt. Spektrosk. 81, 660 (1996) [Opt. Spectrosc. 81, 602 (1996)].

    Google Scholar 

  19. V. G. Farafonov and N. V. Voshchinnikov, Opt. Spektrosk. 83, 973 (1997) [Opt. Spectrosc. 83, 899 (1997)].

    Google Scholar 

  20. V. G. Farafonov, V. B. Il’in, T. Henning, et al., J. Quant. Spectrosc. Radiat. Transf. 65, 877 (2000).

    Article  ADS  Google Scholar 

  21. V. I. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions (Nauka, Moscow, 1976).

    Google Scholar 

  22. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York, 1984; Mir, Moscow, 1987).

    Google Scholar 

  23. V. G. Farafonov, Opt. Spektrosk. 69, 866 (1990) [Opt. Spectrosc. 69, 514 (1990)].

    Google Scholar 

  24. V. G. Farafonov, Opt. Spektrosk. 77, 455 (1994) [Opt. Spectrosc. 77, 402 (1994)].

    Google Scholar 

  25. N. V. Voshchinnikov and V. G. Farafonov, Opt. Spektrosk. 88, 78 (2000) [Opt. Spectrosc. 88, 71 (2000)].

    Article  ADS  Google Scholar 

  26. V. G. Farafonov, Opt. Spektrosk. 88, 492 (2000) [Opt. Spectrosc. 88, 441 (2000)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Optika i Spektroskopiya, Vol. 90, No. 5, 2001, pp. 826–835.

Original Russian Text Copyright © 2001 by Farafonov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farafonov, V.G. New recursive solution of the problem of scattering of electromagnetic radiation by multilayer spheroidal particles. Opt. Spectrosc. 90, 743–752 (2001). https://doi.org/10.1134/1.1374664

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1374664

Keywords

Navigation