Advertisement

Semiconductors

, Volume 35, Issue 5, pp 554–556 | Cite as

Superlattice conductivity under the action of a nonlinear electromagnetic wave

  • D. V. Zav’yalov
  • S. V. Kryuchkov
Low-Dimensional Systems
  • 28 Downloads

Abstract

The influence exerted by a nonlinear electromagnetic wave on the dc conductivity of a superlattice is analyzed. An essentially nonlinear current-voltage (I-V) characteristic is obtained. A portion of negative absolute conductivity appears in the I-V characteristic at certain nonlinear-wave parameters. A distinction is made between the given case and that of a monochromatic wave, when a large number of such portions may exist. For typical superlattice parameters, some of the negative absolute conductivity must appear at a nonlinear wave field strength E0≈1.8×103 V/cm.

Keywords

Field Strength Magnetic Material Electromagnetic Wave Electromagnetism Nonlinear Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Ignatov and Yu. A. Romanov, Phys. Status Solidi B 73(1), 327 (1976).Google Scholar
  2. 2.
    A. A. Ignatov and Yu. A. Romanov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 21(1), 132 (1978).Google Scholar
  3. 3.
    V. V. Pavlovich and É. M. Épshtein, Fiz. Tverd. Tela (Leningrad) 18(5), 1483 (1976) [Sov. Phys. Solid State 18, 963 (1976)].Google Scholar
  4. 4.
    V. V. Pavlovich and É. M. Épshtein, Fiz. Tekh. Poluprovodn. (Leningrad) 10(10), 2001 (1976) [Sov. Phys. Semicond. 10, 1196 (1976)].Google Scholar
  5. 5.
    S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, The Optics of Femtosecond Pulses (Nauka, Moscow, 1988).Google Scholar
  6. 6.
    T. Dekorsy, R. Ott, H. Kurtz, and K. Köhler, Phys. Rev. B 51(23), 17275 (1995).Google Scholar
  7. 7.
    O. M. Bulashenko, M. J. Garcia, and L. L. Bonilla, Phys. Rev. B 53(15), 10008 (1996).Google Scholar
  8. 8.
    Yu. Parhnovskii and H. Metiu, Phys. Rev. B 51(7), 4193 (1995).ADSGoogle Scholar
  9. 9.
    F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Properties of Semiconductors with Superlattices (Nauka, Moscow, 1989).Google Scholar
  10. 10.
    S. V. Kryuchkov and K. A. Popov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 32(3), 334 (1998) [Semiconductors 32, 302 (1998)].Google Scholar
  11. 11.
    S. V. Kryuchkov and A. I. Shapovalov, Opt. Spektrosk. 81(2), 336 (1996) [Opt. Spectrosc. 81, 305 (1996)].Google Scholar
  12. 12.
    S. L. Ktitorov, G. S. Simin, and V. Ya. Sandalovskii, Fiz. Tverd. Tela (Leningrad) 13(8), 2229 (1971) [Sov. Phys. Solid State 13, 1872 (1971)].Google Scholar
  13. 13.
    L. Esaki and R. Tsu, IBM J. Res. Dev. 14(1), 61 (1970).Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2001

Authors and Affiliations

  • D. V. Zav’yalov
    • 1
  • S. V. Kryuchkov
    • 1
  1. 1.Volgograd State Pedagogical UniversityVolgogradRussia

Personalised recommendations