Skip to main content
Log in

Emission Efficiency and Amplification Properties of the Plasma of a Pulsed Discharge in Ar at Elevated Pressures

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The spontaneous emission efficiency of an \({\rm Ar}_2^*\) excimer and its amplification properties at a wavelength of 126 nm are studied using a numerical model of the weakly ionized plasma of a pulsed discharge in Ar at elevated pressures. It is shown that, under real experimental conditions, it is possible to achieve a net gain coefficient of the active medium equal to ≈0.065 cm−1 by increasing the gas density up to 4.0 × 1020 cm−3 at an initial gas temperature of 170 K. The internal conversion efficiency of discharge energy into spontaneous emission depends weakly on the gas temperature and attains 75% for a gas density of 2.7 × 1020 cm−3, but with excitation powers much lower than for the maximum gain. The applicability of the model at low excitation powers is tested by comparison with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. M. Hughes, J. Shannon, and R. Hunter, Appl. Phys. Lett. 24, 488 (1974).

    Article  ADS  Google Scholar 

  2. W. G. Wrobel, H. Rohr, and K. H. Steyer, Appl. Phys. Lett. 36, 113 (1980).

    Article  ADS  Google Scholar 

  3. T. Sakurai, N. Goto, C. E. Webb, et al., J. Phys. D 20, 709 (1987).

    Article  ADS  Google Scholar 

  4. H. Ninomiya and K. Nakamura, Opt. Commun. 134, 521 (1997).

    Article  ADS  Google Scholar 

  5. S. Neeser, T. Kunz, and H. Langhoff, J. Phys. D 30, 1489 (1997).

    Article  ADS  Google Scholar 

  6. S. Neeser, M. Schumann, and H. Langhoff, Appl. Phys. B: Lasers Opt. B63, 103 (1996).

    Article  ADS  Google Scholar 

  7. E. Elson and M. Rokni, J. Phys. D 29, 716 (1996).

    Article  ADS  Google Scholar 

  8. K. S. Gochelashvily, A. V. Dem’yanov, I. V. Kochetov, et al., Opt. Commun. 91, 66 (1992).

    Article  ADS  Google Scholar 

  9. I. V. Kochetov and D. Lo, Opt. Commun. 113, 54 (1995).

    Article  Google Scholar 

  10. S. K. Lam, C.-E. Zheng, D. Lo, et al., J. Phys. D 33, 242 (2000).

    Article  ADS  Google Scholar 

  11. P. Dube, M. J. Kiik, and B. P. Stoicheff, J. Chem. Phys. 103, 7708 (1995).

    Article  ADS  Google Scholar 

  12. A. Kvaran, M. J. Shaw, and J. P. Simons, Appl. Phys. B: Photophys. Laser Chem. B46, 95 (1988).

    Article  ADS  Google Scholar 

  13. V. A. Adamovich, A. V. Dem’yanov, I. V. Kochetov, et al., Kvantovaya Élektron. (Moscow) 17, 1395 (1990).

    ADS  Google Scholar 

  14. J. W. Shon, M. J. Kushner, G. A. Hebner, et al., J. Appl. Phys. 73, 2686 (1993).

    Article  ADS  Google Scholar 

  15. D. J. Eckstrom, H. H. Nakano, D. C. Lorents, et al. J. Appl. Phys. 64, 1679 (1988).

    Article  ADS  Google Scholar 

  16. D. J. Eckstrom, H. H. Nakano, D. C. Lorents, et al., J. Appl. Phys. 64, 1691 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dem’yanov, A.V., Lo, D. Emission Efficiency and Amplification Properties of the Plasma of a Pulsed Discharge in Ar at Elevated Pressures. Plasma Phys. Rep. 27, 440–447 (2001). https://doi.org/10.1134/1.1371606

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1371606

Keywords

Navigation