Skip to main content

Computer Simulation of the Three-Dimensional Regime of Proton Acceleration in the Interaction of Laser Radiation with a Thin Spherical Target


Results from particle-in-cell simulations of the three-dimensional regime of proton acceleration in the interaction of laser radiation with a thin spherical target are presented. It is shown that the density of accelerated protons can be several times higher than that in conventional accelerators. The focusing of fast protons created in the interaction of laser radiation with a spherical target is demonstrated. The focal spot of fast protons is localized near the center of the sphere. The conversion efficiency of laser energy into fast ion energy attains 5%. The acceleration mechanism is analyzed and the electron and proton energy spectra are obtained.

This is a preview of subscription content, access via your institution.


  1. 1.

    T. Tajima and J. Dawson, Phys. Rev. Lett. 43, 267 (1979).

    ADS  Article  Google Scholar 

  2. 2.

    M. Tabak, J. Hammer, M. E. Glinsky, et al., Phys. Plas-; mas 1, 1626 (1994).

    ADS  Article  Google Scholar 

  3. 3.

    T. Ditmire, J. Zweiback, V. P. Yanovsky, et al., Nature; 398, 489 (1999).

    ADS  Article  Google Scholar 

  4. 4.

    G. S. Sarkisov, V. Yu. Bychenkov, V. N. Novikov, et al. Phys. Rev. E 59, 7042 (1999).

    ADS  Google Scholar 

  5. 5.

    V. S. Khoroshkov and E. I. Minakova, Eur. J. Phys. 19, 523 (1998).

    Article  Google Scholar 

  6. 6.

    T. Zh. Esirkepov, Y. Sentoku, K. Mima, et al., Pis’ ma Zh. Éksp. Teor. Fiz. 70, 80 (1999) [JETP Lett. 70, 82 (1999)].

    Google Scholar 

  7. 7.

    S. V. Bulanov, T. Zh. Esirkepov, F. Califano, et al. Pis’ma Zh. Éksp. Teor. Fiz. 71, 593 (2000) [JETP Lett. 71,407(2000)].

    Google Scholar 

  8. 8.

    Y. Sentoku, T. V. Lisseikina, T. Zh. Esirkepov, et al. Phys. Rev. E 62, 7271 (2000).

    ADS  Google Scholar 

  9. 9.

    A. Maksimchuk, S. Gu, K. Flippo, etal.,Phys. Rev. Lett. 84, 4108 (2000).

    ADS  Article  Google Scholar 

  10. 10.

    F. Pegoraro, S. Bulanov, F. Califano, et al., IEEE Trans. Plasma Sci. 28, 1226 (2000).

    ADS  Article  Google Scholar 

  11. 11.

    M. Roth, T. E. Cowan, M. D. Perry, et al., in Proceedings of the 4th International Workshop on Fast Ignition of Fusion Targets, Palaiseau, 2000, Ed. by P. Mora and J. C. Gauthier (Ecole Politechnique, Palaiseau, 2000).

  12. 12.

    V. Yu. Bychenkov, W. Rozmus, A. Maksimchuk, and D. Umstadter, Comments Plasma Phys. Controlled Fusion (2001) (in press).

  13. 13.

    H. Ruhl, in Proceedings of the International Workshop on the High-Intensity Laser Pulse Interaction with Plas-mas, Albuquerque, NM, 2000, Ed. by F. Pegoraro and I. Pogorelsky.

  14. 14.

    S. Atzeni, Phys. Plasmas 6, 3316 (1999).

    ADS  Article  Google Scholar 

  15. 15.

    S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).

    ADS  Article  Google Scholar 

  16. 16.

    A. R. Piriz and M. M. Sánchez, Phys. Plasmas 5, 4373 (1998).

    ADS  Article  Google Scholar 

  17. 17.

    C. Deutsch, Y. Furukawa, K. Mima, et al., Phys. Rev. Lett. 77, 2483 (1996).

    ADS  Article  Google Scholar 

  18. 18.

    P. A. Norreys, R. Allott, R. J. Clark, et al., Phys. Plasmas 7, 3721 (2000).

    ADS  Article  Google Scholar 

  19. 19.

    J. Denavit, Phys. Rev. Lett. 69, 3052 (1992); S. Miya-moto, S. Kato, K. Mima, et al.,J. Plasma Fusion Res. 73, 343 (1997).

    ADS  Article  Google Scholar 

  20. 20.

    A. V. Vshivkov, N. M. Naumova, F. Pegoraro, and S. V. Bulanov, Phys. Plasmas 5, 2727 (1998).

    ADS  Article  Google Scholar 

  21. 21.

    T. Honda, K. Nishihara, T. Okamoto, et al., J. Plasma Fusion Res. 75(10-CD), 219 (1999).

    Google Scholar 

  22. 22.

    K. Krushelnick, E. L. Clark, Z. Najmudin, et al., Phys. Rev. Lett. 83, 737 (1999); E. L. Clark, K. Krushelnik, M. Zepf, et al., Phys. Rev. Lett. 85, 1654 (2000).

    ADS  Article  Google Scholar 

  23. 23.

    A. V. Gordeev and T. V. Loseva, Pis’ma Zh. Éksp. Teor. Fiz. 70, 669 (1999) [JETPLett. 70, 684 (1999)].

    Google Scholar 

  24. 24.

    S. V. Bulanov and A. S. Sakharov, Fiz. Plazmy 26, 1074 (2000) [Plasma Phys. Rep. 26, 1005 (2000)].

    Google Scholar 

  25. 25.

    S. V. Bulanov, V. A. Vshivkov, G. I. Dudnikova, et al. Fiz. Plazmy 25, 764 (1999) [Plasma Phys. Rep. 25, 701 (1999)].

    Google Scholar 

  26. 26.

    S. V. Bulanov, F. Califano, G. I. Dudnikova, et al., in Reviews of Plasma Physics, Ed. by V. D. Shafranov (Consultants Bureau, New York, 2001), Vol. 22.

  27. 27.

    M. H. Key, M. D. Cable, T. E. Cowan, et al., Phys. Plasmas 5, 1966 (1998); R. A. Snavely, M. H. Key, S. P. Hatchett, et al., Phys. Rev. Lett. 85, 2945 (2000).

    ADS  Article  Google Scholar 

  28. 28.

    A. V. Kuznetsov, T. Zh. Esirkepov, F. F. Kamenets, and S. V. Bulanov, Fiz. Plazmy 27,225 (2001) [Plasma Phys. Rep. 27, 211(2001)].

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to H. Ruhl.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ruhl, H., Bulanov, S.V., Cowan, T.E. et al. Computer Simulation of the Three-Dimensional Regime of Proton Acceleration in the Interaction of Laser Radiation with a Thin Spherical Target. Plasma Phys. Rep. 27, 363–371 (2001).

Download citation


  • Laser Radiation
  • Proton Beam
  • Plasma Physic Report
  • Focal Spot
  • Proton Density