Skip to main content
Log in

Mechanical behavior of microcrystalline aluminum-lithium alloy under superplasticity conditions

  • Defects, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Aluminum-lithium alloy 1420, which, after equal-channel angular pressing, has a grain size of about 3 µm, is shown to possess superplasticity in a temperature range of T=320–395°C upon tension at a constant relative strain rate of 10−2–10−3 s−1. The axial deformation at fracture can exceed 1800%. The data processing at such large deformations should be carried out using true strains ɛt and stresses σt. In the flow curve, a short stage of hardening is followed by a long softening stage. They can be described by the relation \(\dot \varepsilon _t \sim \sigma _t^n \exp ( - U/kT)\) with a constant exponent n≈2 and activation energies U≈1 eV for the softening stage and U≈1.4 eV for the hardening stage. The deformation is supposed to be controlled by grain-boundary sliding at the stage of softening and by self-diffusion in the bulk of grains at the hardening stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Fridlyander, Aluminum Wrought Structural Alloys (Metallurgiya, Moscow, 1979).

    Google Scholar 

  2. I. N. Fridlyander and V. S. Sandler, in Metal Science of Aluminum Alloys (Nauka, Moscow, 1985), p. 40.

    Google Scholar 

  3. I. N. Fridlyander, Metalloved. Term. Obrab. Met. 4, 2 (1990).

    Google Scholar 

  4. I. N. Fridlyander, Alum.-Lithium Alloys 3, 1359 (1989).

    Google Scholar 

  5. I. N. Fridlyander, V. S. Sandler, and Z. N. Archakova, in Aluminum Alloys. Industrial Aluminum Alloys (Metallurgiya, Moscow, 1984), p. 207.

    Google Scholar 

  6. Registration Record of International Alloy Designation and Chemical Composition Limits for Wrought Aluminium and Wrought Aluminium Alloys (The Aluminium Association, 1985).

  7. I. N. Fridlyander, N. I. Kolobnev, L. V. Khokhlatova, and E. Yu. Semyonova, Aluminium 5(11), 21 (1990).

    Google Scholar 

  8. I. Ya. Novikov, V. K. Portnoi, I. L. Konstantinov, and N. I. Kolobnev, in Metal Science of Aluminum Alloys (Nauka, Moscow, 1985), p. 84.

    Google Scholar 

  9. M. Kh. Rabinovich, O. A. Kaibyshev, and V. G. Trifonov, Metalloved. Term. Obrab. Met., No. 9, 58 (1981).

  10. V. M. Segal, V. I. Reznikov, A. E. Drobyshevskiy, and V. I. Kopylov, Russ. Metall. 1, 99 (1981).

    Google Scholar 

  11. V. M. Segal, Mater. Sci. Eng., A 197, 157 (1995).

    Google Scholar 

  12. M. V. Markushev, C. C. Bampton, M. Yu. Murashkin, and D. A. Hardwick, Mater. Sci. Eng., A 234–236, 927 (1997).

    Google Scholar 

  13. P. B. Berbon, N. K. Tsenev, R. Z. Valiev, et al., in Proceedings of a TMS Meeting on Superplasticity and Superplastic Forming, San Antonio, 1998, Ed. by A. K. Ghosh and T. R. Bieler (The Metallurgical Society, Warrendale, Pa., 1998), p. 127.

    Google Scholar 

  14. P. B. Berbon, M. Furukawa, Z. Horita, et al., in Proceedings of the 2nd Symposium on Hot Deformation of Aluminum Alloys II, Rosemont, 1998, Ed. by T. R. Bieler, L. A. Lalli, and S. R. MacEwen (The Minerals, Metals, and Materials Society, Warrendale, Pa., 1998), p. 111.

    Google Scholar 

  15. M. M. Myshlyaev, L. D. Grigor’eva, and M. A. Prokunin, in Proceedings of the XVIII Russia Conference on Electron Microscopy (IPTM, Ross. Akad. Nauk, Chernogolovka, 2000), p. 178.

    Google Scholar 

  16. I. E. Kurov, V. A. Stepanov, and V. V. Shpeizman, Physics of Metals and Metal Science (LPI, Leningrad, 1969), No. 305, p. 71.

    Google Scholar 

  17. V. A. Likhachev, M. M. Myshlyaev, and O. N. Sen’kov, Superplastic Behavior of Aluminum in Torsion (Inst. Fiziki Tverdogo Tela, Akad. Nauk SSSR, Chernogolovka, 1981), p. 1.

    Google Scholar 

  18. V. A. Likhachev, M. M. Myshlyaev, and O. N. Sen’kov, Problems of Mechanics of Deformable Solids (Lening. Gos. Univ., Leningrad, 1982), No. 14, p. 179.

    Google Scholar 

  19. V. A. Likhachev, M. M. Myshlyaev, and O. N. Sen’kov, Laws of the Superplastic Behavior of Aluminum in Torion (Lawrence Livermore National Laboratory, Livermore, 1987), p. 1.

    Google Scholar 

  20. M. M. Myshlyaev, Author’s Abstracts of Doctoral Dissertation (Chernogolovka, 1981).

  21. M. W. Grabski, Structural Superplasticity of Metals (Slask, Katowice, 1973; Metallurgiya, Moscow, 1975).

    Google Scholar 

  22. O. A. Kaibyshev, Plasticity and Superplasticity of Metals (Metallurgiya, Moscow, 1975).

    Google Scholar 

  23. O. A. Kaibyshev, Superplasticity of Industrial Alloys (Metallurgiya, Moscow, 1984).

    Google Scholar 

  24. J. Friedel, Dislocations (Pergamon, Oxford, 1964; Mir, Moscow, 1967).

    Google Scholar 

  25. J. P. Stark, Solid State Diffusion (Wiley, New York, 1976; Énergiya, Moscow, 1980).

    Google Scholar 

  26. P. M. Brick and A. Phillips, Trans. Metall. Soc. AIME 124, 331 (1937).

    Google Scholar 

  27. A. H. Beerwald, Z. Elektrochem. Angew. Phys. Chem. 45, 789 (1939).

    Google Scholar 

  28. J. E. Dorn, Creep and Recovery (American Society for Metals, Cleveland, 1957; Metallurgizdat, Moscow, 1961), p. 255.

    Google Scholar 

  29. G. B. Gibbs, Mem. Sci. Rev. Metall. 62, 841 (1965).

    Google Scholar 

  30. I. N. Fridlyander, K. V. Chuistov, A. L. Berezina, and N. I. Kolobnev, Aluminum-Lithium Alloys. Structure and Properties (Naukova Dumka, Kiev, 1992).

    Google Scholar 

  31. M. M. Myshlyaev, Creep and Dislocation Structure of Crystals at Moderate Temperatures (Inst. Khim. Fiz., Akad. Nauk SSSR, Chernogolovka, 1977).

    Google Scholar 

  32. M. M. Myshlyaev, Annu. Rev. Mater. Sci. 11, 31 (1981).

    Article  Google Scholar 

  33. M. M. Myshlyaev, Cryst. Res. Technol. 14(10), 1185 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 43, No. 5, 2001, pp. 833–838.

Original Russian Text Copyright © 2001 by Myshlyaev, Prokunin, Shpeizman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myshlyaev, M.M., Prokunin, M.A. & Shpeizman, V.V. Mechanical behavior of microcrystalline aluminum-lithium alloy under superplasticity conditions. Phys. Solid State 43, 865–870 (2001). https://doi.org/10.1134/1.1371367

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1371367

Keywords

Navigation