Skip to main content
Log in

The effect of high pressure on the structure and on the magnetic and electronic properties of nickel monoxide

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A diamond anvil cell is used to investigate the effect of high pressure (up to 37.5 GPa) on the optical absorption spectra of a single crystal of nickel oxide (NiO). In addition, strain-gage measurements are used to experimentally investigate the V(P) equation of state at a hydrostatic pressure of up to 8.5 GPa in a high-pressure chamber of the “toroid” type. Measurements are performed at room temperature. Absorption bands are observed, which correspond to optical d-d transitions of Ni2+ ion in the crystal field of ligands 3A2g3T2g, 3A2g → {au1}E1g, 3A2g3T1g(F), and 3A2g1T2g. The values of energy of these transitions increase linearly with pressure, and their pressure coefficients are 7.3 ± 0.2, 2.87 ± 0.9, 9.7 ± 0.5, and 8.9 ± 0.3 meV/GPa, respectively. The pressure derivative of the crystal field parameter 10Dq corresponding to the 3A2g3T2g transition gives the pressure dependence of the magnitude of exchange integral J in the Anderson hybridization model. It is found that, in the pressure range from zero to 37.5 GPa, the behavior of the exchange integral J is largely defined by the hybridization parameter b = (10Dq/3). At the same time, the Coulomb interaction parameter Ueff is independent of pressure and, therefore, has no effect on the variation of J. The Coulomb interaction Ueff ≈ 7.47 ± 0.005 eV is determined. The experimental data on the equation of state are used to derive the \(J \propto V^\varepsilon \) correlation, where ε = −2.99 ± 0.15, which is in good agreement with the predictions of Bloch’s theory (ε = −10/3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Slack, J. Appl. Phys. 31, 1571 (1960).

    Article  ADS  Google Scholar 

  2. N. F. Mott, Proc. Phys. Soc. London, Sec. A 62, 416 (1949); Can. J. Phys. 34, 287 (1961); Metal-insulator Transitions (Taylor and Francis, London, 1990).

    Article  ADS  Google Scholar 

  3. J. Zaanen, G. A. Sawatsky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).

    Article  ADS  Google Scholar 

  4. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  ADS  Google Scholar 

  5. S. Hufner, J. Osterwalder, T. Riesterer, and F. Hulliger, Solid State Commun. 52, 793 (1984).

    Article  ADS  Google Scholar 

  6. T. Eto, S. Endo, M. Imai, et al., Phys. Rev. B 61, 14984 (2000).

    Article  ADS  Google Scholar 

  7. R. Newman and R. M. Chrenko, Phys. Rev. 114, 1507 (1959).

    Article  ADS  Google Scholar 

  8. L. G. Khvostantsev, L. F. Vereshchagin, and A. P. Novikov, High Temp.-High Press. 9, 637 (1977).

    Google Scholar 

  9. O. B. Tsiok, V. V. Bredikhin, V. A. Sidorov, and L. G. Khvostantsev, High Press. Res. 10, 523 (1992).

    Article  ADS  Google Scholar 

  10. R. L. Clendenen and H. G. Drickamer, J. Chem. Phys. 44, 4223 (1966).

    Article  ADS  Google Scholar 

  11. E. Huang, High Press. Res. 13, 307 (1995).

    Article  ADS  Google Scholar 

  12. J. Wang, E. S. Fisher, and M. H. Manghnani, Chin. Phys. Lett. 8, 153 (1991).

    Article  ADS  Google Scholar 

  13. D. R. Stephens and H. G. Drickamer, J. Chem. Phys. 34, 937 (1961).

    Article  ADS  Google Scholar 

  14. Zheng Wen-Chen, Li Wei, and Wu Shao-Yi, Phys. Status Solidi A 173, 437 (1999).

    Article  ADS  Google Scholar 

  15. D. T. Sviridov, R. K. Sviridova, and Yu. F. Smirnov, Optical Spectra of Transition Metals in Crystals (Nauka, Moscow, 1976), p. 239.

    Google Scholar 

  16. P. W. Anderson, Phys. Rev. 115, 2 (1959); Solid State Phys. 14, 99 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  17. M. T. Hutchings and E. J. Samuelsen, Phys. Rev. B 6, 344 (1972).

    Article  ADS  Google Scholar 

  18. M. J. Massey, N. H. Chen, J. W. Allen, and R. Merlin, Phys. Rev. B 42, 8776 (1990).

    Article  ADS  Google Scholar 

  19. V. A. Sidorov, Appl. Phys. Lett. 72, 2174 (1998).

    Article  ADS  Google Scholar 

  20. D. Bloch, J. Phys. Chem. Solids 27, 881 (1966).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Lyubutin.

Additional information

__________

Translated from Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, Vol. 119, No. 4, 2001, pp. 799–804.

Original Russian Text Copyright © 2001 by Gavrilyuk, Troyan, Lyubutin, Sidorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilyuk, A.G., Troyan, I.A., Lyubutin, I.S. et al. The effect of high pressure on the structure and on the magnetic and electronic properties of nickel monoxide. J Exp Theor Phys 92, 696–700 (2001). https://doi.org/10.1134/1.1371350

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1371350

Navigation