Skip to main content
Log in

Evolution of the Fermi surface of cuprates on the basis of the spin-polaron approach

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A spin-polaron approach is proposed for describing the evolution of the Fermi surface (FS) and the electronic structure of cuprates with various doping levels on the basis of the spin-fermion model. The complexity of the internal structure of a spin polaron is taken into account by introducing the superposition of spinpolaron states with various radii, while doping is effectively described by frustration in the spin Hamiltonian. The calculations of the polaron spectrum, the spectral weight of bare charge carriers, and the Fermi surface demonstrate radical changes in the electronic structure upon an increase of the doping level. The results obtained make it possible to use a unified approach for describing the experimental data on photoemission such as the isotropic bottom of the band and the residual Fermi surface of undoped compounds, the large Fermi surface and the extended saddle-type singularity for optimally doped compounds, as well as the pseudogap in the case of intermediate doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. O. Wells, Z. X. Shen, A. Matsuura, et al., Phys. Rev. Lett. 74, 964 (1995).

    Article  ADS  Google Scholar 

  2. D. S. Marshall, D. S. Dessau, A. G. Loeser, et al., Phys. Rev. Lett. 76, 4841 (1996).

    Article  ADS  Google Scholar 

  3. F. Ronning, C. Kim, D. L. Feng, et al., Science 282, 2067 (1998).

    Article  ADS  Google Scholar 

  4. J. G. Tobin, C. G. Olson, C. Gu, et al., Phys. Rev. B 45, 5563 (1992).

    Article  ADS  Google Scholar 

  5. K. Gofron, J. C. Campuzano, H. Ding, et al., J. Phys. Chem. Solids 54, 1193 (1993).

    Article  ADS  Google Scholar 

  6. A. A. Abrikosov, J. C. Campuzano, and J. C. Gofron, Physica C (Amsterdam) 214, 73 (1993).

    Article  ADS  Google Scholar 

  7. D. S. Dessau, Z. X. Shen, D. M. King, et al., Phys. Rev. Lett. 71, 2781 (1993).

    Article  ADS  Google Scholar 

  8. D. M. King, Z. H. Shen, D. S. Dessau, et al., Phys. Rev. Lett. 73, 3298 (1994).

    Article  ADS  Google Scholar 

  9. P. Aebi, J. Osterwalder, P. Schwaller, et al., Phys. Rev. Lett. 72, 2757 (1994).

    Article  ADS  Google Scholar 

  10. V. Borisenko, M. S. Golden, S. Legner, et al., Phys. Rev. Lett. 84, 4453 (2000).

    Article  ADS  Google Scholar 

  11. A. P. Kampf and J. R. Schrieffer, Phys. Rev. B 42, 7967 (1990).

    Article  ADS  Google Scholar 

  12. A. G. Loeser, Z. X. Shen, D. S. Dessau, et al., Science 273, 325 (1996).

    Article  ADS  Google Scholar 

  13. H. Ding, T. Yokoya, J. C. Campuzano, et al., Nature 382, 51 (1996).

    Article  ADS  Google Scholar 

  14. H. Ding, M. R. Norman, T. Yokoya, et al., Phys. Rev. Lett. 78, 2628 (1997).

    Article  ADS  Google Scholar 

  15. M. R. Norman, H. Ding, M. Randeria, et al., Nature 392, 157 (1998).

    Article  ADS  Google Scholar 

  16. K. J. Szczepanski, P. Horsch, W. Stephan, and M. Ziegler, Phys. Rev. B 41, 2017 (1990).

    Article  ADS  Google Scholar 

  17. E. Dagotto, R. Joynt, A. Moero, et al., Phys. Rev. B 41, 9049 (1990).

    Article  ADS  Google Scholar 

  18. D. Duffy, A. Nazarenko, S. Haas, et al., Phys. Rev. B 56, 5597 (1997).

    Article  ADS  Google Scholar 

  19. C. L. Kane, P. A. Lee, and N. Read, Phys. Rev. B 39, 6880 (1989).

    Article  ADS  Google Scholar 

  20. G. Martínez and P. Horsch, Phys. Rev. B 44, 317 (1991).

    Article  ADS  Google Scholar 

  21. T. Toyama, Y. Sibata, S. Maekawa, et al., J. Phys. Soc. Jpn. 69, 9 (2000).

    Article  ADS  Google Scholar 

  22. J. Bala and A. M. Oleś, Phys. Rev. B 61, 6907 (2000).

    Article  ADS  Google Scholar 

  23. R. Eder and K. Becker, Z. Phys. B 78, 219 (1990).

    Article  ADS  Google Scholar 

  24. A. V. Chubukov and D. K. Morr, Phys. Rep. 288, 355 (1997).

    Article  ADS  Google Scholar 

  25. C. E. Carneiro, M. J. De Oliveira, S. R. A. Salinas, and G. V. Uimin, Physica C (Amsterdam) 166, 206 (1990).

    Article  ADS  Google Scholar 

  26. R. Hayn, A. F. Barabanov, and J. Schulenburg, Z. Phys. B 102, 359 (1997).

    Article  ADS  Google Scholar 

  27. A. F. Barabanov, V. M. BerezovskiÏ, E. Zhasinas, et al., Zh. Éksp. Teor. Fiz. 110, 1480 (1996) [JETP 83, 819 (1996)]; A. F. Barabanov, R. O. Kuzian, L. A. Maksimov, et al., J. Phys.: Condens. Matter 3, 9129 (1991); Physica C (Amsterdam) 252, 308 (1995); 212, 375 (1993).

    Google Scholar 

  28. Y. Sibata, T. Tohyama, and S. Maekawa, Phys. Rev. B 59, 1840 (1999).

    Article  ADS  Google Scholar 

  29. R. Eder, Y. Ohta, and G. A. Sawatzky, Phys. Rev. B 55, R3414 (1997).

    Article  ADS  Google Scholar 

  30. C. Kim, P. J. White, Z. X. Shen, et al., Phys. Rev. Lett. 80, 4245 (1998).

    Article  ADS  Google Scholar 

  31. W. Yin, C. Gong, and P. Leung, Phys. Rev. Lett. 81, 2534 (1998).

    Article  ADS  Google Scholar 

  32. A. F. Barabanov, A. A. Kovalev, O. V. Urazaev, and A. M. Belemouk, Phys. Lett. A 265, 221 (2000); A. F. Barabanov, A. A. Kovalev, and O. V. Urazaev, Dokl. Akad. Nauk 365, 197 (1999) [Dokl. Phys. 44, 286 (1999)]; Pis’ma Zh. Éksp. Teor. Fiz. 68, 386 (1998) [JETP Lett. 68, 412 (1998)].

    Article  ADS  Google Scholar 

  33. V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).

    Article  ADS  Google Scholar 

  34. V. J. Emery and G. Reiter, Phys. Rev. B 38, 4547 (1988).

    Article  ADS  Google Scholar 

  35. A. F. Barabanov, E. Zhasinas, O. V. Urazaev, and L. A. Maksimov, Pis’ma Zh. Éksp. Teor. Fiz. 66, 173 (1997) [JETP Lett. 66, 182 (1997)].

    Google Scholar 

  36. R. O. Kuzian, R. Hayn, A. F. Barabanov, and L. A. Maksimov, Phys. Rev. B 58, 6194 (1998).

    Article  ADS  Google Scholar 

  37. G. Shirane, Y. Endoh, R. J. Birgenau, et al., Phys. Rev. Lett. 59, 1613 (1987).

    Article  ADS  Google Scholar 

  38. M. Inui, S. Doniach, and M. Gabay, Phys. Rev. B 38, 6631 (1988).

    Article  ADS  Google Scholar 

  39. J. F. Annet, R. M. Martin, A. K. McMahan, and S. Satpathy, Phys. Rev. B 40, 2620 (1989).

    Article  ADS  Google Scholar 

  40. S. Bacci, E. Gagliano, and F. Nori, Int. J. Mod. Phys. B 5, 325 (1991).

    Article  ADS  Google Scholar 

  41. A. Moreo, E. Dagotto, T. Jolicoeur, and J. Riera, Phys. Rev. B 42, 6283 (1990).

    Article  ADS  Google Scholar 

  42. J. R. Schrieffer, J. Low Temp. Phys. 99, 397 (1995).

    Article  ADS  Google Scholar 

  43. P. Prelovek, Phys. Lett. A 126, 287 (1988).

    Article  ADS  Google Scholar 

  44. A. Ramsak and P. Prelovek, Phys. Rev. B 42, 10415 (1990).

    Article  ADS  Google Scholar 

  45. J. Zaanen and A. M. Oleś, Phys. Rev. B 37, 9423 (1988).

    Article  ADS  Google Scholar 

  46. M. S. Hybertsen, M. Schlüter, and N. E. Christensen, Phys. Rev. B 39, 9028 (1989).

    Article  ADS  Google Scholar 

  47. K. T. Park, K. Terakura, T. Oguchi, et al., J. Phys. Soc. Jpn. 57, 3445 (1988).

    Article  ADS  Google Scholar 

  48. A. K. McMahan, R. M. Martin, and S. Satpathy, Phys. Rev. B 38, 6650 (1988).

    Article  ADS  Google Scholar 

  49. A. F. Barabanov and V. M. BerezovskiÏ, Zh. Éksp. Teor. Fiz. 106, 1156 (1994) [JETP 79, 627 (1994)]; A. F. Barabanov and V. M. Berezovskii, J. Phys. Soc. Jpn. 63, 3974 (1994); Phys. Lett. A 186, 175 (1994).

    Google Scholar 

  50. Y. Takahashi, Z. Phys. B 71, 425 (1988).

    Article  ADS  Google Scholar 

  51. M. S. Golden, V. Borisenko, S. Legner, et al., Adv. Solid State Phys. 40, 697 (2000).

    Article  Google Scholar 

  52. S. Lenger, V. Borisenko, C. Dürr, et al., Phys. Rev. B 62, 154 (2000).

    Article  ADS  Google Scholar 

  53. V. G. Grigoryan, G. Paasch, and S. L. Drechsler, Phys. Rev. B 60, 1340 (1999).

    Article  ADS  Google Scholar 

  54. H. Shimahara, J. Phys. Soc. Jpn. 62, 1317 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Barabanov.

Additional information

__________

Translated from Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, Vol. 119, No. 4, 2001, pp. 777–798.

Original Russian Text Copyright © 2001 by Barabanov, Kovalev, Urazaev, Belemuk, Hayn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barabanov, A.F., Kovalev, A.A., Urazaev, O.V. et al. Evolution of the Fermi surface of cuprates on the basis of the spin-polaron approach. J Exp Theor Phys 92, 677–695 (2001). https://doi.org/10.1134/1.1371349

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1371349

Navigation