Skip to main content
Log in

Soft-potential model and homogeneous width of spectral lines of impurity centers in molecular amorphous media

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A study is made to analyze the possibility of using the soft-potential model in optical investigations of disordered molecular systems with impurities. A procedure is suggested for calculating the temperature dependence of the homogeneous width of a phononless line in amorphous media with impurities within the soft-potential model. A calculation is performed of the temperature dependence of the width of a phononless line (optical dephasing) in an amorphous system of polymethyl methacrylate (PMMA) with an addition of tetratert-butylterrylene (TBT) using the parameters of this system known from the literature. Calculations are performed of the contributions to the width of a phononless line due to the interaction of an impurity with tunneling two-level systems, with thermally activated barrier crossings in double-well potentials, and with quasilocal modes of the matrix. The model calculation results are compared with the experimental data on the photon echo for TBT/PMMA, measured by us in the temperature range from 0.3 to 20 K. It is found that the soft-potential model describes qualitatively correctly the temperature behavior of the homogeneous width of a phononless line. In the temperature range of T < 2 K, where the main contribution to optical dephasing is associated with tunneling two-level systems, the predicted values of phononless line width agree well with the experimental data. At higher temperatures, some difference is observed between the prediction and experimental data, which may be due to the effect of impurity on the formation of quasilocal oscillation of the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).

    Article  ADS  Google Scholar 

  2. P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 2, 1 (1972).

    Article  ADS  Google Scholar 

  3. W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).

    Article  ADS  Google Scholar 

  4. Amorphous Solids: Low Temperature Properties, Ed. by W. A. Phillips (Springer-Verlag, Berlin, 1981).

    Google Scholar 

  5. S. Hunklinger and A. K. Raychaudhuri, in Progress in Low Temperature Physics, Ed. by D. F. Brewer (Elseiver, Amsterdam, 1986), Vol. 9.

    Google Scholar 

  6. Tunneling Systems in Amorphous and Crystalline Solids, Ed. by P. Esquinazi (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  7. R. H. Stolen, Phys. Chem. Glasses 11, 83 (1970).

    Google Scholar 

  8. J. J. Freeman and A. C. Anderson, Phys. Rev. B 34, 5684 (1986).

    Article  ADS  Google Scholar 

  9. G. Bellessa, Phys. Rev. Lett. 40, 1456 (1978).

    Article  ADS  Google Scholar 

  10. U. Buchenau, M. Prager, N. Nucker, et al., Phys. Rev. B 34, 5665 (1986).

    Article  ADS  Google Scholar 

  11. U. Buchenau, H. M. Zhou, N. Nucker, et al., Phys. Rev. Lett. 60, 1318 (1988).

    Article  ADS  Google Scholar 

  12. V. G. Karpov, M. I. Klinger, and F. N. Ignat’ev, Zh. Éksp. Teor. Fiz. 84, 760 (1983) [Sov. Phys. JETP 57, 439 (1983)].

    Google Scholar 

  13. U. Buchenau, Yu. M. Galperin, V. L. Gurevich, and H. R. Schober, Phys. Rev. B 43, 5039 (1991).

    Article  ADS  Google Scholar 

  14. U. Buchenau, Yu. M. Galperin, V. L. Gurevich, et al., Phys. Rev. B 46, 2798 (1992).

    Article  ADS  Google Scholar 

  15. D. A. Parshin, Phys. Rev. B 49, 9400 (1994).

    Article  ADS  Google Scholar 

  16. V. L. Gurevich, D. A. Parshin, J. Pelous, and H. R. Schober, Phys. Rev. B 48, 16318 (1993).

    Article  ADS  Google Scholar 

  17. B. M. Kharlamov, R. I. Personov, and L. A. Bykovskaya, Opt. Commun. 12, 191 (1974).

    Article  ADS  Google Scholar 

  18. A. A. GorokhovskiÏ, R. K. Kaarli, and L. A. Rebane, Pis’ma Zh. Éksp. Teor. Fiz. 20, 474 (1974) [JETP Lett. 20, 216 (1974)].

    Google Scholar 

  19. N. A. Kurnit, I. D. Abella, and S. R. Hartmann, Phys. Rev. Lett. 13, 567 (1964).

    Article  ADS  Google Scholar 

  20. T. J. Aartsma and D. A. Wiersma, Phys. Rev. Lett. 36, 1360 (1976).

    Article  ADS  Google Scholar 

  21. S. Voelker, Ann. Rev. Phys. Chem. 40, 499 (1989).

    Article  ADS  Google Scholar 

  22. R. Jankowiak, J. M. Hayes, and G. J. Small, Chem. Rev. 93, 1471 (1993).

    Article  Google Scholar 

  23. B. Jackson and R. Silbey, Chem. Phys. Lett. 99, 331 (1983).

    Article  ADS  Google Scholar 

  24. G. Schulte, W. Grond, D. Haarer, and R. Silbey, J. Phys. Chem. 88, 679 (1988).

    Article  Google Scholar 

  25. A. J. García and J. Fernández, Phys. Rev. B 56, 579 (1997).

    Article  ADS  Google Scholar 

  26. S. J. Zilker, L. Kador, J. Friebel, et al., J. Chem. Phys. 109, 6780 (1998).

    Article  ADS  Google Scholar 

  27. Yu. G. Vainer, M. A. Kol’chenko, A. V. Naumov, et al., J. Lumin. 86, 265 (2000).

    Article  Google Scholar 

  28. D. A. Parshin, Phys. Scr. 49, 180 (1993).

    Article  Google Scholar 

  29. D. A. Parshin, Fiz. Tverd. Tela (St. Petersburg) 36, 1809 (1994) [Phys. Solid State 36, 991 (1994)].

    Google Scholar 

  30. M. A. Il’in, V. G. Karpov, and D. A. Parshin, Zh. Éksp. Teor. Fiz. 92, 291 (1987) [Sov. Phys. JETP 65, 165 (1987)].

    Google Scholar 

  31. V. G. Karpov and D. A. Parshin, Zh. Éksp. Teor. Fiz. 88, 2212 (1985) [Sov. Phys. JETP 61, 1308 (1985)].

    Google Scholar 

  32. D. A. Parshin and S. Sahling, Phys. Rev. B 47, 5677 (1993).

    Article  ADS  Google Scholar 

  33. W. Kohler, J. Meiler, and J. Friedrich, Phys. Rev. B 35, 4031 (1987).

    Article  ADS  Google Scholar 

  34. M. A. Ramos, L. Gil, A. Bringer, and U. Buchenau, Phys. Status Solidi A 135, 477 (1993).

    Article  ADS  Google Scholar 

  35. A. J. García, R. Balda, and J. Fernández, J. Lumin. 83–84, 417 (1999).

    Article  Google Scholar 

  36. E. Geva and J. L. Skinner, J. Chem. Phys. 107, 7630 (1997).

    Article  ADS  Google Scholar 

  37. A. V. Naumov, Yu. G. Vainer, and S. J. Zilker, J. Lumin. 86, 273 (2000).

    Article  Google Scholar 

  38. J. Jäckle, Z. Phys. 257, 212 (1972).

    Article  ADS  Google Scholar 

  39. P. Doussineau, C. Frenois, R. G. Leisure, et al., J. Phys. (Paris) 41, 1193 (1980).

    Article  Google Scholar 

  40. D. E. McCumber and M. D. Sturge, J. Appl. Phys. 34, 1682 (1963).

    Article  ADS  Google Scholar 

  41. R. O. Pohl, in Amorphous Solids: Low Temperature Properties, Ed. by W. A. Phillips (Springer-Verlag, Berlin, 1981).

    Google Scholar 

  42. J. F. Berret and M. Meißner, Z. Phys. B 70, 65 (1988).

    Article  ADS  Google Scholar 

  43. A. Mermet, N. V. Surovtsev, E. Duval, et al., Europhys. Lett. 36, 277 (1996).

    Article  ADS  Google Scholar 

  44. E. Geva and J. L. Skinner, J. Chem. Phys. 108, 8485 (1998).

    Article  ADS  Google Scholar 

  45. E. Duval, N. García, A. Boukenter, and J. Serughetti, J. Chem. Phys. 99, 2040 (1993).

    Article  ADS  Google Scholar 

  46. S. N. Gladenkova and I. S. Osadko, Chem. Phys. Lett. 187, 628 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Vainer.

Additional information

__________

Translated from Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, Vol. 119, No. 4, 2001, pp. 738–748.

Original Russian Text Copyright © 2001 by Vainer, Kol’chenko, Personov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vainer, Y.G., Kol’chenko, M.A. & Personov, R.I. Soft-potential model and homogeneous width of spectral lines of impurity centers in molecular amorphous media. J Exp Theor Phys 92, 643–651 (2001). https://doi.org/10.1134/1.1371346

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1371346

Navigation