Skip to main content
Log in

Band gap collapse and ultrafast “cold” melting of silicon during femtosecond laser pulse

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

It is established experimentally that a high concentration of electron-hole plasma produced in silicon by femtosecond laser pulse induces a sequential “collapse” of the band gap in the [111] and [100] directions and leads to the formation of a “cold” metallic liquid phase during the pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. V. Shank, R. Yen, and C. Hirliman, Phys. Rev. Lett. 50, 454 (1983).

    Article  ADS  Google Scholar 

  2. K. Sokolowski-Tinten and D. von der Linde, Phys. Rev. B 61, 2643 (2000).

    Article  ADS  Google Scholar 

  3. Yu. V. Kopaev, V. V. Menyailenko, and S. N. Molotkov, Fiz. Tverd. Tela (Leningrad) 27, 3288 (1985) [Sov. Phys. Solid State 27, 1979 (1985)].

    Google Scholar 

  4. S. V. Govorkov, V. I. Emel’yanov, and I. L. Shumay, Laser Phys. 2, 77 (1992).

    Google Scholar 

  5. P. Stampfli and K. H. Bennemann, Phys. Rev. B 42, 7163 (1990).

    Article  ADS  Google Scholar 

  6. V. I. Emel’yanov and D. V. Babak, Fiz. Tverd. Tela (St. Petersburg) 41, 1462 (1999) [Phys. Solid State 41, 1338 (1999)].

    Google Scholar 

  7. A. Gambirasio, M. Bernasconi, L. Colombo, et al., Phys. Rev. B 61, 8233 (2000).

    Article  ADS  Google Scholar 

  8. K. Sokolowski-Tinten, J. Solis, J. Bialkowski, et al., Phys. Rev. Lett. 81, 3679 (1998).

    ADS  Google Scholar 

  9. Femtosecond Laser Pulses: Principles and Experiments, Ed. by C. Rulliere (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  10. M. C. Downer, R. L. Fork, and C. V. Shank, J. Opt. Soc. Am. B 42, 595 (1985).

    ADS  Google Scholar 

  11. D. H. Reitze, T. R. Zhang, Wm. M. Wood, et al., J. Opt. Soc. Am. B 7, 84 (1990).

    ADS  Google Scholar 

  12. E. N. Glezer, Y. Siegal, L. Huang, et al., Phys. Rev. B 51, 6959 (1995).

    ADS  Google Scholar 

  13. K. F. Berggren and B. E. Sernelius, Phys. Rev. B 24, 1971 (1981).

    Article  ADS  Google Scholar 

  14. Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, Orlando, 1985).

    Google Scholar 

  15. K. M. Shvarev, B. A. Baum, and N. V. Gel’d, Fiz. Tverd. Tela (Leningrad) 16, 3246 (1974) [Sov. Phys. Solid State 16, 2111 (1974)].

    Google Scholar 

  16. K. Sokolowski-Tinten, J. Bialkowski, M. Boing, et al., Phys. Rev. B 58, 11805 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 73, No. 5, 2001, pp. 263–267.

Original Russian Text Copyright © 2001 by Kudryashov, Emel’yanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudryashov, S.I., Emel’yanov, V.I. Band gap collapse and ultrafast “cold” melting of silicon during femtosecond laser pulse. Jetp Lett. 73, 228–231 (2001). https://doi.org/10.1134/1.1371059

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1371059

PACS numbers

Navigation