Skip to main content
Log in

Microscopic approach to transition-energy staggering in superdeformed bands

  • 90th Anniversary of A.B. Migdal's Birthday Nuclei
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The current status of the ΔI=4 bifurcation in superdeformed bands is reviewed by making use of a theoretical model based on the interaction of rotation and single-particle nucleon motion in nuclei with an axial deformation. It is shown that the hexadecapole-type distortion of a nuclear shape by rotation is especially important for explaining the phenomenon. The necessary condition for staggering is obtained from an analysis of the nonadiabatic effect of rotation. This criterion is applied to 30 superdeformed bands in the mass region around A ∼ 150. An analysis confirms the configuration-dependence effect and allows us to discriminate between single-particle states active and inactive for staggering. The consideration is based on the additivity of the nonaxial hexadecapole moment, which plays a key role in the staggering phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. K. Peker, S. Pearlstein, J. O. Rasmussen, and J. H. Hamilton, Phys. Rev. Lett. 50, 1749 (1983).

    Article  ADS  Google Scholar 

  2. S. Flibotte et al., Phys. Rev. Lett. 71, 4299 (1993).

    ADS  Google Scholar 

  3. B. Cederwall et al., Phys. Rev. Lett. 72, 3150 (1994).

    Article  ADS  Google Scholar 

  4. B. Cederwall et al., Phys. Lett. B 346, 244 (1995).

    ADS  Google Scholar 

  5. L. A. Bernstein et al., Phys. Rev. C 52, R1171 (1995).

    Article  ADS  Google Scholar 

  6. A. T. Semple et al., Phys. Rev. Lett. 76, 3671 (1996).

    Article  ADS  Google Scholar 

  7. G. de Angelis et al., Phys. Rev. C 53, 679 (1996).

    ADS  Google Scholar 

  8. S. M. Fischer et al., Phys. Rev. C 53, 2126 (1996).

    Article  ADS  Google Scholar 

  9. I. Hamamoto and B. Mottelson, Phys. Lett. B 333, 294 (1994); Phys. Scr. T56, 27 (1995).

    ADS  Google Scholar 

  10. A. O. Macchiavelli et al., Phys. Rev. C 51, R1 (1995).

    Article  ADS  Google Scholar 

  11. I. M. Pavlichenkov and S. Flibotte, Phys. Rev. C 51, R460 (1995).

    Article  ADS  Google Scholar 

  12. K. Burzyński, P. Magierski, J. Dobaczewski, and W. Nazarewicz, Phys. Scr. T56, 228 (1995).

    ADS  Google Scholar 

  13. P. Magierski, K. Burzyński, and J. Dobaczewski, Acta Phys. Pol. B 26, 291 (1995).

    Google Scholar 

  14. I. N. Mikhailov and P. Quentin, Phys. Rev. Lett. 74, 3336 (1995).

    Article  ADS  Google Scholar 

  15. Yang Sun, Jing-ye Zhang, and Mike Guidry, Phys. Rev. Lett. 75, 3398 (1995).

    Article  ADS  Google Scholar 

  16. W. G. Harter, Comput. Phys. Rep. 8, 319 (1988).

    Article  ADS  Google Scholar 

  17. I. Ragnarsson, Poster of the Conference on Physics from Large γ-Ray Detector Arrays, Berkeley, 1994.

  18. W. D. Luo, A. Bouguettoucha, J. Dobaczewski, et al., Phys. Rev. C 52, 2989 (1995).

    Article  ADS  Google Scholar 

  19. P. Magierski, P.-H. Heenen, and W. Nazarewicz, Phys. Rev. C 51, R2880 (1995).

    Article  ADS  Google Scholar 

  20. F. Dönau, S. Frauendorf, and J. Meng, Phys. Lett. B 387, 667 (1996).

    ADS  Google Scholar 

  21. D. S. Haslip et al., Phys. Rev. Lett. 78, 3447 (1997).

    Article  ADS  Google Scholar 

  22. B. Singh, R. B. Firestone, and S. Y. Frank Chu, Nucl. Data Sheets 78, 1 (1996).

    ADS  Google Scholar 

  23. D. S. Haslip, S. Flibotte, C. E. Svensson, and J. C. Waddington, Phys. Rev. C 58, R1893 (1998).

    ADS  Google Scholar 

  24. I. M. Pavlichenkov, Pis'ma Zh. Éksp. Teor. Fiz. 64, 231 (1996) [JETP Lett. 64, 252 (1996)].

    Google Scholar 

  25. I. M. Pavlichenkov, Phys. Rev. C 55, 1275 (1997).

    Article  ADS  Google Scholar 

  26. I. M. Pavlichenkov, Pis'ma Zh. Éksp. Teor. Fiz. 66, 759 (1997) [JETP Lett. 66, 796 (1997)].

    Google Scholar 

  27. G. A. Lalazissis and K. Hara, Phys. Rev. C 58, 243 (1998).

    ADS  Google Scholar 

  28. D. S. Haslip et al., Phys. Rev. C 58, R2649 (1998).

    ADS  Google Scholar 

  29. Yu. T. Grin' and I. M. Pavlichenkov, Zh. Éksp. Teor. Fiz. 43, 465 (1962) [Sov. Phys. JETP 16, 333 (1963)].

    Google Scholar 

  30. I. M. Pavlichenkov, Nucl. Phys. 55, 225 (1964).

    Google Scholar 

  31. E. R. Marshalek, Phys. Rev. B 139, 770 (1965); 158, 993 (1967).

    MathSciNet  ADS  Google Scholar 

  32. I. M. Pavlichenkov, Phys. Rep. 226, 175 (1993).

    Article  ADS  Google Scholar 

  33. W. G. Harter and C. W. Patterson, J. Chem. Phys. 80, 4241 (1984).

    Article  ADS  Google Scholar 

  34. I. M. Pavlichenkov, in Proceedings of the Conference on Physics from Large γ-Ray Detector Arrays, Berkeley, 1994, p. 14.

  35. M. Baranger and K. Kumar, Nucl. Phys. A 110, 490 (1968).

    ADS  Google Scholar 

  36. I. Ragnarsson and P. B. Semmes, Hyperfine Interact. 43, 425 (1988).

    ADS  Google Scholar 

  37. B. Haas et al., Nucl. Phys. A 561, 251 (1993).

    ADS  Google Scholar 

  38. G. Hebbinghaus et al., Phys. Lett. B 240, 311 (1990).

    ADS  Google Scholar 

  39. W. Satula, J. Dobaczewski, J. Dudek, and W. Nazarewicz, Phys. Rev. Lett. 77, 5182 (1996).

    Article  ADS  Google Scholar 

  40. A. B. Migdal, Nucl. Phys. 13, 655 (1959).

    MathSciNet  MATH  Google Scholar 

  41. H. Sakamoto and T. Kishimoto, Nucl. Phys. A 501, 205 (1989).

    ADS  Google Scholar 

  42. I. M. Pavlichenkov, Pis'ma Zh. Éksp. Teor. Fiz. 71, 8 (2000) [JETP Lett. 71, 4 (2000)].

    Google Scholar 

  43. Y. R. Shimizu, Nucl. Phys. A 520, 477c (1990).

    ADS  Google Scholar 

  44. Ch. Theiseh et al., Phys. Rev. C 54, 2910 (1996).

    ADS  Google Scholar 

  45. H. Savajols et al., Phys. Rev. Lett. 76, 4480 (1996).

    Article  ADS  Google Scholar 

  46. I. Ragnarsson, private communication.

  47. S. Flibotte et al., Nucl. Phys. A 584, 373 (1995).

    ADS  Google Scholar 

  48. W. Nazarewicz and I. Ragnarsson, in Handbook of Nuclear Properties, Ed. by D. Poenaru and W. Greiner (Clarendon Press, Oxford, 1996), p. 80.

    Google Scholar 

  49. G. de France et al., Phys. Lett. B 331, 290 (1994).

    ADS  Google Scholar 

  50. L. B. Karlsson, I. Ragnarsson, and S. Åberg, Nucl. Phys. A 639, 654 (1998).

    ADS  Google Scholar 

  51. L. B. Karlsson, Doctoral Dissertation (Lund Univ., 1999).

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 64, No. 4, 2001, pp. 653–668.

Original English Text Copyright © 2001 by Pavlichenkov, Shchurenkov.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlichenkov, I.M., Shchurenkov, A.A. Microscopic approach to transition-energy staggering in superdeformed bands. Phys. Atom. Nuclei 64, 595–610 (2001). https://doi.org/10.1134/1.1368218

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1368218

Keywords

Navigation