Skip to main content
Log in

Hydrogen atom in quantum mechanics and quantization on curved surfaces

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

New quantization rules for classical systems are obtained using the Titchmarsh expansion. These rules generalize the conventional ones and are reduced to them when a transition to Cartesian coordinates exists. An equation generalizing the Schrödinger equation to arbitrary natural systems is found. The principle of minimal constraint (strong equivalence principle) makes it possible to extend this equation to any curved spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Steklov, Fundamental Problems of Mathematical Physics (Nauka, Moscow, 1983).

    Google Scholar 

  2. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Academic, New York, 1957; Fizmatgiz, Moscow, 1960).

    Google Scholar 

  3. V. A. Fock, The Principles of Quantum Mechanics (Nauka, Moscow, 1976; Mir, Moscow, 1978).

    Google Scholar 

  4. N. Dunford and J. T. Schwartz, Linear Operators (Interscience, New York, 1963; Mir, Moscow, 1966), Vol. 2.

    Google Scholar 

  5. T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, Berlin, 1966; Mir, Moscow, 1972).

    Google Scholar 

  6. E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations (Clarendon, Oxford, 1946; Inostrannaya Literatura, Moscow, 1960), Vol. 1.

    Google Scholar 

  7. V. V. Batygin and A. V. Bukhvalov, Probabalistic Principles of Quantum Mechanics. Hilbert Space as State Space (Leningr. Politekh. Inst. im. M.I. Kalinina, Leningrad, 1982).

    Google Scholar 

  8. F. A. Berezin and M. A. Shubin, The Schrödinger Equation (Mosk. Gos. Univ., Moscow, 1983; Kluwer, Dordrecht, 1991).

    Google Scholar 

  9. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, Cambridge, 1952; Fizmatgiz, Moscow, 1963), Vol. 2.

    Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Fizmatgiz, Moscow, 1963; Pergamon, New York, 1977).

    Google Scholar 

  11. N. N. Lebedev, Special Functions and Their Applicatiors (Fizmatgiz, Moscow, 1963; Prentice Hall, Englewood Cliffs, 1965).

    Google Scholar 

  12. W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1971; Mir, Moscow, 1985), Vol. 2.

    Google Scholar 

  13. G. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Wiley, New York, 1972; Mir, Moscow, 1976).

    Google Scholar 

  14. F. A. Berezin, Izv. Akad. Nauk SSSR, Ser. Mat. 38(5), 1116 (1974).

    MATH  MathSciNet  Google Scholar 

  15. V. V. Kozlov, Symmetry, Topology, and Resonance in Quantum Mechanics (Udmurts. Gos. Univ., 1995).

  16. N. Hurt, Geometric Quantization in Action (Reidel, Dordrecht, 1983; Mir, Moscow, 1985).

    Google Scholar 

  17. R. D. Richtmyer, Principles of Advanced Mathematical Physics (Springer-Verlag, New York, 1978; Mir, Moscow, 1982), Vol. 2.

    Google Scholar 

  18. B. F. Schutz, Geometrical Methods of Mathematical Physics (Cambridge Univ. Press, Cambridge, 1980; Mir, Moscow, 1984).

    Google Scholar 

  19. Yu. Goncharov, Mod. Phys. Lett. A 9(34), 3175 (1994).

    ADS  MATH  MathSciNet  Google Scholar 

  20. Yu. Goncharov, Phys. Lett. B 398, 32 (1997).

    ADS  MathSciNet  Google Scholar 

  21. J. S. Dokew, Functional Integration and Its Application, Ed. by A. M. Arthur (Clarendon, Oxford, 1974), pp. 34–52.

    Google Scholar 

  22. N. P. Landsman, Mathematical Topics between Classical and Quantum Mechanics (Springer-Verlag, New York, 1998).

    Google Scholar 

  23. N. P. Landsman, J. Geom. Phys. 12(2), 93 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  24. Z.-J. Liu and M. Qian, Trans. Am. Math. Soc. 331, 321 (1992).

    MathSciNet  Google Scholar 

  25. J. Underhill, J. Math. Phys. 19, 1932 (1978).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. J. Smatyki, Geometric Quantization and Quantum Mechanics (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  27. N. M. J. Woodhouse, Geometric Quantization (Clarendon, Oxford, 1992).

    Google Scholar 

  28. Y. Wu, J. Math. Phys. 39, 867 (1998).

    ADS  MATH  MathSciNet  Google Scholar 

  29. C. Emmrich, Commun. Math. Phys. 151, 515 (1993).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 71, No. 4, 2001, pp. 6–12.

Original Russian Text Copyright © 2001 by Chirkov, Berdnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, A.G., Berdnikov, A.Y. Hydrogen atom in quantum mechanics and quantization on curved surfaces. Tech. Phys. 46, 368–374 (2001). https://doi.org/10.1134/1.1365457

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1365457

Keywords

Navigation