Skip to main content
Log in

On algebraic foundations of Fourier holography

  • Holography
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Fourier holography is considered as the physical basis of an algebraic model. A constructive interpretation of the formal axiomatics is presented. It is shown that the scheme of Fourier holography corresponds to an additive semigroup with convolution serving as abstract summation. The correlation operation plays the role of subtraction, and a diffraction-limited point source becomes an additive neutral element. The Fourier holography scheme sequentially constructs model elements in accordance with the Peano axioms. It realizes the axis of model elements correctly with respect to the summation and subtraction operations within the limits of angular invariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961; Nauka, Moscow, 1974).

    MATH  Google Scholar 

  2. F. T. S. Yu and J. Suganda, Optical Signal Processing, Computing and Neural Networks (Wiley, New York, 1992).

    Google Scholar 

  3. N. Collings, A. R. Pourzand, F. L. Vladimirov, et al., Opt. Mem. Neural Netw. 6, 187 (1997).

    Google Scholar 

  4. A. V. Pavlov, in Proceedings of the Second International Conference on Soft Computing and Measurements, SCM’99, St. Petersburg, 1999, Vol. 1, p. 218.

  5. A. V. Pavlov and E. I. Shubnikov, Opt. Zh., No. 1, 53 (1994) [J. Opt. Technol. 61, 42 (1994)].

  6. L. M. Serebryakova, Opt. Spektrosk. 78, 984 (1995) [Opt. Spectrosc. 78, 891 (1995)].

    Google Scholar 

  7. L. M. Serebryakova, Opt. Spektrosk. 85, 629 (1998) [Opt. Spectrosc. 85, 574 (1998)].

    Google Scholar 

  8. A. V. Pavlov, Opt. Spektrosk. 89, 859 (2000) [Opt. Spectrosc. 89, 792 (2000)].

    Article  Google Scholar 

  9. M. Sugeno, Trans. Soc. Instrum. Control Eng. 8(2), 95 (1972).

    Google Scholar 

  10. D. C. Wunsh, J. D. Morris, R. L. McGann, et al., Appl. Opt. 32, 1399 (1993).

    Article  ADS  Google Scholar 

  11. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, New York, 1971; Mir, Moscow, 1973).

    Google Scholar 

  12. A. Kaufmann, Introduction to the Theory of Fuzzy Subsets (Academic, New York, 1975; Radio i Svyaz’, Moscow, 1982).

    MATH  Google Scholar 

  13. D. Hilbert and P. Bernays, Foundations of Mathematics. Logical Calculus and Formalization of Arithmetic (Moscow, 1979).

  14. D. Dudois and H. Prade, Int. J. Syst. Sci. 9, 613 (1978).

    Article  Google Scholar 

  15. A. V. Pavlov, in Optics in Computing ’98, Accepted Postdeadline Papers (Brugge, 1998), pp. 7–11.

  16. G. I. Vasilenko and L. M. Tsibul’kin, Holographic Recognizing Devices (Radio i Svyaz’, Moscow, 1985).

    Google Scholar 

  17. A. M. Kuleshov and E. I. Shubnikov, Opt. Spektrosk. 60, 606 (1986) [Opt. Spectrosc. 60, 369 (1986)].

    Google Scholar 

  18. N. L. Ivanova, A. P. Onokhov, and A. N. Chaika, Pis’ma Zh. Tekh. Fiz. 26(3), 1 (2000) [Tech. Phys. Lett. 26, 91 (2000)].

    Google Scholar 

  19. Y. Owechko, IEEE J. Quantum Electron. 25, 619 (1989).

    Article  ADS  Google Scholar 

  20. A. V. Pavlov, Opt. Spektrosk. 76, 794 (1994) [Opt. Spectrosc. 76, 706 (1994)].

    ADS  Google Scholar 

  21. A. V. Pavlov, Opt. Zh. 64(11), 32 (1997) [J. Opt. Technol. 64, 1013 (1997)].

    Google Scholar 

  22. A. M. Kuleshov and E. I. Shubnikov, Opt. Spektrosk. 60, 606 (1986) [Opt. Spectrosc. 60, 369 (1986)].

    Google Scholar 

  23. A. M. Kuleshov, E. I. Shubnikov, and S. A. Smaeva, Opt. Spektrosk. 60, 1273 (1986) [Opt. Spectrosc. 60, 791 (1986)].

    Google Scholar 

  24. N. S. Shestov, Optical Signal Enhancement on a Noise Background (Sov. Radio, Moscow, 1967).

    Google Scholar 

  25. S. A. Akhmanov, Yu. E. D’yakov, and A. S. Chirkin, Introduction to Statistical Radiophysics and Optics (Nauka, Moscow, 1981).

    Google Scholar 

  26. B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence (Prentice Hall, Englewood Cliffs, 1992).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Optika i Spektroskopiya, Vol. 90, No. 3, 2001, pp. 515–520.

Original Russian Text Copyright © 2001 by Pavlov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlov, A.V. On algebraic foundations of Fourier holography. Opt. Spectrosc. 90, 452–457 (2001). https://doi.org/10.1134/1.1358459

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1358459

Keywords

Navigation