Skip to main content
Log in

Concerning microsecond megaampere-current plasma opening switches

  • Experimental Instruments and Techniques
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The operation mechanism of a microsecond megaampere-current plasma opening switch is considered. The magnetic field penetrates into the plasma via near-electrode diffusion. The increase in the degree of plasma magnetization due to electron heating results in an increase in plasma resistivity and current break. The problem of calculating a plasma opening switch is mathematically formulated. The problem reduces to simultaneously solving one-fluid two-temperature MHD equations with allowance for the Hall current and two-dimensional electric circuit equations. To analyze the solution obtained, one-dimensional equations are derived based on the assumption that the size of the electrode region in which the plasma is strongly magnetized is much smaller that the plasma column length. In this approximation, the operating modes of a plasma opening switch are studied numerically. On long time scales (≥2–3 µs), the operation is limited by plasma ejection from the interelectrode gap. On short time scales (≤1 µs), the dominant process is the penetration of the magnetic field with the current velocity. The results of the calculations are compared with the available experimental data. The developed concept and numerical procedure are used to optimize the scheme for an explosion experiment on breaking megaampere currents under conditions similar to those in the EMIR complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Koval’chuk and G. A. Mesyats, Dokl. Akad. Nauk SSSR 284, 857 (1985) [Sov. Phys. Dokl. 30, 879 (1985)].

    Google Scholar 

  2. D. D. Hinshelwood, J. R. Boller, R. J. Commisso, et al., Appl. Phys. Lett. 49, 1635 (1986).

    Article  ADS  Google Scholar 

  3. G. Cooperstein and P. F. Ottinger, IEEE Trans. Plasma Sci. 15, 629 (1987).

    Google Scholar 

  4. B. M. Koval’chuk and G. A. Mesyats, in Proceedings of the VIII International Conference on High-Power Particle Beams, New York, 1991, Vol. 1, p. 92.

  5. W. Rix, D. Parks, J. Shannon, et al., IEEE Trans. Plasma Sci. 19, 400 (1991).

    Article  Google Scholar 

  6. B. V. Weber, R. J. Commisco, P. J. Goodrich, et al., IEEE Trans. Plasma Sci. 19, 757 (1991).

    Article  Google Scholar 

  7. V. D. Selemir, V. A. Demidov, A. V. Ivanovskii, et al., Fiz. Plazmy 25, 1085 (1999) [Plasma Phys. Rep. 25, 1000 (1999)].

    Google Scholar 

  8. A. S. Kingsep, Yu. V. Mokhov, and K. V. Chukbar, Fiz. Plazmy 10, 854 (1984) [Sov. J. Plasma Phys. 10, 495 (1984)].

    Google Scholar 

  9. A. S. Kingsep, K. V. Chukbar, and V. V. Yan’kov, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev (Énergoizdat, Moscow, 1987; Consultants Bureau, New York, 1990), Vol. 16.

    Google Scholar 

  10. A. S. Kingsep and A. A. Sevast’yanov, Fiz. Plazmy 17, 205 (1991) [Sov. J. Plasma Phys. 17, 119 (1991)].

    Google Scholar 

  11. A. V. Gordeev, A. V. Grechikha, and A. V. Gulin, Fiz. Plazmy 17, 650 (1991) [Sov. J. Plasma Phys. 17, 381 (1991)].

    Google Scholar 

  12. L. I. Rudakov, Fiz. Plazmy 19, 835 (1993) [Plasma Phys. Rep. 19, 433 (1993)].

    Google Scholar 

  13. A. Fruchtman, Phys. Fluids B 3, 1908 (1991).

    ADS  Google Scholar 

  14. R. J. Mason, P. L. Auer, R. N. Sudan, et al., Phys. Fluids B 5, 1115 (1993).

    Article  ADS  Google Scholar 

  15. P. F. Ottinger, S. A. Goldstein, and R. A. Meger, J. Appl. Phys. 56, 774 (1984).

    Article  ADS  Google Scholar 

  16. K. V. Chukbar and V. V. Yankov, Zh. Tekh. Fiz. 58, 2130 (1988) [Sov. Phys. Tech. Phys. 33, 1293 (1988)].

    Google Scholar 

  17. A. S. Kingsep and A. A. Sevast’yanov, Fiz. Plazmy 17, 1183 (1991) [Sov. J. Plasma Phys. 17, 685 (1991)].

    Google Scholar 

  18. A. V. Gordeev, A. V. Grechikha, and Ya. L. Kalda, Fiz. Plazmy 16, 95 (1990) [Sov. J. Plasma Phys. 16, 55 (1990)].

    Google Scholar 

  19. P. V. Sasorov, Pis’ma Zh. Éksp. Teor. Fiz. 56, 614 (1992) [JETP Lett. 56, 599 (1992)].

    Google Scholar 

  20. A. A. Esaulov and P. V. Sasorov, Fiz. Plazmy 23, 624 (1997) [Plasma Phys. Rep. 23, 576 (1997)].

    Google Scholar 

  21. A. S. Chuvatin, A. A. Kim, V. A. Kokshenev, et al., Izv. Vyssh. Uchebn. Zaved., Fiz. 40(12), 56 (1997).

    Google Scholar 

  22. D. Hinshelwood, B. Weber, J. M. Grossmann, et al., Phys. Rev. Lett. 68, 3567 (1992).

    Article  ADS  Google Scholar 

  23. W. Rix, P. Coleman, J. R. Thompson, et al., IEEE Trans. Plasma Sci. 25, 169 (1997).

    Article  Google Scholar 

  24. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1963), Vol. 1.

    Google Scholar 

  25. V. F. Bukharov, V. I. Chelpanov, V. A. Demodov, et al., in Proceedings of the XI International Conference on Pulsed Power, Monterey, 1997, Vol. 2, p. 1029.

  26. Yu. P. Raizer, Zh. Éksp. Teor. Fiz. 36, 1583 (1959) [Sov. Phys. JETP 9, 1124 (1959)].

    Google Scholar 

  27. A. A. Samarskii and Yu. P. Popov, Difference Schemes in Gas Dynamics (Nauka, Moscow, 1975).

    Google Scholar 

  28. A. A. Radtsig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Énergoatomizdat, Moscow, 1986, Springer-Verlag, Berlin, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 71, No. 3, 2001, pp. 57–68.

Original Russian Text Copyright © 2001 by Bukharov, Vlasov, Demidov, Zhdanov, Ivanovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Kornilov, Selemir, Tsareva, Chelpanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukharov, V.F., Vlasov, Y.V., Demidov, V.A. et al. Concerning microsecond megaampere-current plasma opening switches. Tech. Phys. 46, 326–338 (2001). https://doi.org/10.1134/1.1356485

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1356485

Keywords

Navigation