Skip to main content
Log in

Exact solution of the Boltzmann kinetic equation for a Lorentzian gas

  • Plasma Kinetics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The classical methods of mathematical physics are applied to construct an integral solution to the Chapman-Cowling-Davydov equation, which is derived from the kinetic Boltzmann equation with a collision term in the Lorentzian-gas approximation. For a particular initial distribution, the solution is obtained in an explicit form in terms of a Whittaker function. It is shown that, on long (macroscopic) time scales, the evolving distribution function with an arbitrary initial shape approaches a Maxwellian distribution. This result agrees with the accepted views regarding the overall temporal evolution of an arbitrary unsteady isolated system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Stankevich, Uch. Zap. Imp. Mosk. Univ., Otd. Fiz.-Mat. 6, 77 (1885).

    Google Scholar 

  2. G. E. Uhlenbeek, in Proceedings of the International Symposium “100 Years Boltzmann Equation,” 1972, Ed. by E. G. Cohen and W. Thirring (Springer-Verlag, New York, 1973), p. 107; Proceedings of the International Congress on Mathematics, 1958, Ed. by J. A. Todd (Cambridge Univ. Press, Cambridge, 1960), p. 256.

    Google Scholar 

  3. H. Grad, Commun. Pure Appl. Math. 2, 331 (1949).

    MathSciNet  MATH  Google Scholar 

  4. M. Kac, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability (California Univ. Press, California, 1956), Vol. 3, p. 171.

    Google Scholar 

  5. N. B. Maslova, Vest. Leningr. Univ., Ser. 1, No. 13, 88 (1968).

  6. A. V. Bobylev, Dokl. Akad. Nauk SSSR 225, 535 (1975) [Sov. Phys. Dokl. 20, 740 (1975)]; Dokl. Akad. Nauk SSSR 225, 1041 (1975) [Sov. Phys. Dokl. 20, 820 (1975)]; Dokl. Akad. Nauk SSSR 225, 1296 (1975) [Sov. Phys. Dokl. 20, 822 (1975)]; Dokl. Akad. Nauk SSSR 231, 571 (1976) [Sov. Phys. Dokl. 21, 632 (1976)]; Dokl. Akad. Nauk SSSR 251, 1361 (1980) [Sov. Phys. Dokl. 25, 257 (1980)]; Teor. Mat. Fiz. 60, 280 (1984); A. V. Bobylev, E. Gabetta, and Z. Pareschi, Math. Methods Appl. Sci. 5, 253 (1995); A. V. Bobylev, Math. Methods Appl. Sci. 19, 825 (1996); A. V. Bobylev and G. Spiga, SIAM J. Appl. Math. 58, 1128 (1998).

    MathSciNet  ADS  Google Scholar 

  7. A. V. Bobylev, Exact and Approximate Solution Methods in Theory of Nonlinear Kinetic Boltzmann and Landau Equations (Inst. Prikl. Mat., Moscow, 1987).

    Google Scholar 

  8. M. Krook and T. T. Wu, Phys. Rev. Lett. 36, 1107 (1976); 38, 991 (1977); Phys. Fluids 20, 1589 (1977).

    Article  ADS  Google Scholar 

  9. M. H. Ernst, Phys. Lett. A 69A, 390 (1979); J. Stat. Phys. 34, 1001 (1984); M. H. Ernst and E. M. Hendriks, Phys. Lett. A 70A, 183 (1979); 81A, 315 (1981); 81A, 371 (1981); M. H. Ernst, in Nonequilibrium Phenomena: I. The Boltzmann Equation, Ed. by J. Lebowitz and E. W. Montroll (North-Holland, Amsterdam, 1983; Mir, Moscow, 1986), p. 51.

    MathSciNet  ADS  Google Scholar 

  10. M. H. Ernst, Phys. Rep. 78 (1), 1 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  11. D. Ya. Petrina and A. V. Mishchenko, Dokl. Akad. Nauk SSSR 298, 338 (1988) [Sov. Phys. Dokl. 33, 32 (1988)]; A. V. Mishchenko and D. Ya. Petrina, Teor. Mat. Fiz. 77, 135 (1988).

    MathSciNet  ADS  Google Scholar 

  12. C. Cercignani, in Modern Group Analysis: Advances in Analytic and Computing Methods in Mathematical Physics (Kluwer, Dordrecht, 1993), p. 125.

    Google Scholar 

  13. O. P. Bhutani, M. H. Moussa, and K. Vijaykumar, Int. J. Eng. Sci. 33, 331 (1995).

    MathSciNet  Google Scholar 

  14. H. Cabannes, in Comp. Fluid Dynamics (Springer-Verlag, Berlin, 1995), p. 103; Eur. J. Mech. B: Fluids 16, 1 (1997).

    Google Scholar 

  15. H. Cornille, J. Math. Phys. 32, 3439 (1991); in Nonlinear Hyperbolic Problems: Theoretical, Applied and Computational Aspects (Vieweg, Braunschweig, 1993), p. 150; J. Math. Phys. 39, 2004 (1998); J. Phys. A 31, 671 (1998).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. C. R. Garibotti and G. Spiga, J. Phys. A 27, 2709 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  17. T. Platkowski, Arch. Mech. 43 (1), 115 (1991); T. Platkowski and G. Spiga, Eur. J. Mech. B: Fluids 11, 349 (1992).

    MathSciNet  MATH  Google Scholar 

  18. F. Shurrer, J. Stat. Phys. 65, 1045 (1992).

    Google Scholar 

  19. G. Spiga, Transp. Theory Stat. Phys. 25, 699 (1996); 26, 243 (1997).

    MathSciNet  MATH  Google Scholar 

  20. Tiem Dang Hong, Math. Methods Appl. Sci. 3, 655 (1993).

    Google Scholar 

  21. V. P. Silin, Introduction to the Kinetic Theory of Gases (Fiz. Inst. Ross. Akad. Nauk, Moscow, 1998).

    Google Scholar 

  22. H. A. Lorentz, The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat (Dover, New York, 1952; Gostekhizdat, Moscow, 1953).

    Google Scholar 

  23. L. P. Shkarofsky, T. W. Johnston, and M. P. Bachynski, The Particle Kinetics of Plasmas (Addison-Wesley, Reading, 1966; Atomizdat, Moscow, 1969).

    Google Scholar 

  24. P. M. Morse, W. P. Allis, and E. S. Lamer, Phys. Rev. 48, 412 (1935).

    ADS  Google Scholar 

  25. S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases (Cambridge Univ. Press, Cambridge, 1970; Mir, Moscow, 1960).

    Google Scholar 

  26. B. I. Davydov, Zh. Éksp. Teor. Fiz. 6, 463 (1936).

    Google Scholar 

  27. V. V. Sever'yanov, Doctoral Dissertation in Mathematical Physics (Inst. Obshch. Fiz. Ross. Akad. Nauk, Moscow, 1993).

    Google Scholar 

  28. N. N. Lebedev, Special Functions and Their Applications (Fizmatgiz, Moscow, 1963; Prentice-Hall, Englewood Cliffs, 1965).

    Google Scholar 

  29. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Nauka, Moscow, 1971; Academic, New York, 1980).

    Google Scholar 

  30. W. Stiller, Arrhenius Equation and Non-Equilibrium Kinetics (BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1989; Mir, Moscow, 2000).

    Google Scholar 

  31. O. E. Lanford, III, Lect. Notes Phys., No. 38, 1 (1975).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 27, No. 3, 2001, pp. 276–281.

Original Russian Text Copyright © 2001 by Gritsyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gritsyn, M.N. Exact solution of the Boltzmann kinetic equation for a Lorentzian gas. Plasma Phys. Rep. 27, 259–264 (2001). https://doi.org/10.1134/1.1354225

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1354225

Keywords

Navigation