Skip to main content
Log in

On the finite thermal conductivity of a one-dimensional rotator lattice

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A heat transfer process is studied in a one-dimensional lattice of coupled rotators in which the orientation interaction between neighboring units is described by the periodic potential. Using this system as an example, it is demonstrated for the first time that one-dimensional lattices with a finite thermal conductivity in the thermodynamic limit can exist without substrate potential. As the temperature increases, the given system transforms from the state with an infinite thermal conductivity to the state with a finite thermal conductivity. The finiteness of the thermal conductivity stems from the existence of localized stationary excitations that interfere with heat transfer in the lattice. The lifetime and the concentration of these excitations increase with an increase in the temperature, which leads to a monotonic decrease in the thermal conductivity coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fermi, J. Pasta, and S. Ulam, Los Alamos Sci. Lab. Rep. LA-1940 (1955).

  2. O. V. Gendel’man and L. I. Manevich, Zh. Éksp. Teor. Fiz. 102, 511 (1992) [Sov. Phys. JETP 75, 271 (1992)].

    Google Scholar 

  3. S. Lepri, L. Roberto, and A. Politi, Phys. Rev. Lett. 78, 1896 (1997).

    Article  ADS  Google Scholar 

  4. S. Lepri, R. Livi, and A. Politi, Physica D (Amsterdam) 119, 140 (1998).

    ADS  Google Scholar 

  5. S. Lepri, R. Livi, and A. Politi, Europhys. Lett. 43, 271 (1998).

    Article  ADS  Google Scholar 

  6. T. Hatano, Phys. Rev. E 59, R1 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  7. G. Casati, J. Ford, F. Vivaldi, and V. M. Visscher, Phys. Rev. Lett. 52, 1861 (1984).

    Article  ADS  Google Scholar 

  8. T. Prosen and M. Robnik, J. Phys. A 25, 3449 (1992).

    Article  ADS  Google Scholar 

  9. M. J. Gillan and R. W. Holloway, J. Phys. C 18, 5705 (1985).

    ADS  Google Scholar 

  10. B. Hu, B. Li, and H. Zhao, Phys. Rev. E 57, 2992 (1998).

    ADS  Google Scholar 

  11. G. P. Tsironis, A. R. Bishop, A. V. Savin, and A. V. Zolotaryuk, Phys. Rev. E 60, 6610 (1999).

    Article  ADS  Google Scholar 

  12. A. Fillipov, B. Hu, B. Li, and A. Zeltser, J. Phys. A 31, 7719 (1998).

    Article  ADS  Google Scholar 

  13. R. Kubo, M. Toda, and N. Hashitsume, in Statistical Physics, Vol. 2: Nonequilibrium Statistical Mechanics (Springer-Verlag, Berlin, 1991), Springer Ser. Solid-State Sci. 31 (1991).

    Google Scholar 

  14. J. C. Eilbeck and R. Flesch, Phys. Lett. A 194, 200 (1990).

    ADS  MathSciNet  Google Scholar 

  15. S. Takeno and M. Peyrard, Physica D (Amsterdam) 92, 140 (1996).

    Google Scholar 

  16. S. Flach and C. H. Willis, Phys. Rep. 295, 181 (1998).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 43, No. 2, 2001, pp. 341–349.

Original Russian Text Copyright © 2001 by Savin, Gendel’man.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savin, A.V., Gendel’man, O.V. On the finite thermal conductivity of a one-dimensional rotator lattice. Phys. Solid State 43, 355–364 (2001). https://doi.org/10.1134/1.1349488

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1349488

Keywords

Navigation