Skip to main content
Log in

Effect of the saturation conditions and structure on the retention of helium in structural materials

  • Solids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A comparison between the kinetics of helium desorption upon linear heating of samples saturated using various regimes is performed, and the effect of dislocations on the retention of helium in materials is estimated. In order to investigate the effect of the conditions of saturation of materials with helium on its retention, samples of austenitic stainless steel 0Kh16N15M3B saturated using various methods were studied, namely, helium irradiation in a cyclotron, in a magnetic mass-separation setup, inside IRT-2000 and BOR-60 reactors, and using the so-called “tritium trick” technique. The investigations show that when saturation of the samples with helium is accompanied by the introduction of radiation defects (in wide limits of helium concentrations and radiation damage), the kinetics of helium evolution from samples of this type is adequate to the kinetics of its evolution from samples irradiated in a reactor. The investigation of the kinetics of helium evolution from the samples of 0Kh16N15M3B steel both after a preliminary deformation and in the process of deformation showed that, in the process of heating, the helium atoms can migrate along dislocation pipes, resulting in a significant effect on the release of helium and its redistribution in the volume of the material. The activation energy for helium pipe diffusion in austenitic steel 0Kh16N15M3B is about 0.7 eV. Mobile dislocations favor the ejection of helium onto the surface of the material, to grain boundaries, interphase interfaces, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Zaluzhnyi, V. P. Kopitin, and M. V. Cherednichenko-Alchevskyi, Fusion Eng. Des., Part B 41, 129 (1998).

    Google Scholar 

  2. V. F. Zelenskii, I. M. Neklyudov, and T. P. Chernyaeva, Radiation-Induced Defects and Swelling of Materials (Naukova Dumka, Kiev, 1988).

    Google Scholar 

  3. V. F. Reutov and Sh. Sh. Ibragimov, USSR Inventor’s Certificate No. 531433, Byull. Izobret., No. 23 (1978).

  4. A. G. Zaluzhnyi, Yu. N. Sokurskii, N. P. Agapova, et al., At. Énerg. 40(6), 490 (1976).

    Google Scholar 

  5. A. G. Zaluzhnyi, M. V. Cherednichenko-Alchevskii, and O. M. Storozhuk, At. Énerg. 52(6), 398 (1982).

    Google Scholar 

  6. V. L. Arbuzov, S. N. Votinov, A. A. Grigor’yan, et al., At. Énerg. 55(4), 214 (1983).

    Google Scholar 

  7. A. G. Zaluzhny\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), O. M. Storozhuk, and M. V. Cherednichenko-Alchevskii, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdenii Radiats. Materialoved. No. 2, 79 (1988).

  8. V. S. Karasev, G. F. Shved, R. V. Grebennikov, et al., At. Énerg. 34(4), 251 (1973).

    Google Scholar 

  9. D. M. Skorov, N. P. Agapova, A. G. Zaluzhnyi, et al., At. Énerg. 40(5), 387 (1976).

    Google Scholar 

  10. C. H. Zhang, K. Q. Chen, Y. S. Wang, and J. G. Sun, Proceedings of the VIII International Conference on Fusion Reactor Materials, 1999, Part B, p. 1621.

  11. A. Ryazanov, H. Matsui, and A. Kazaryan, Proceedings of the VIII International Conference on Fusion Reactor Materials, 1999, Part C, p. 356.

  12. H. Matsui, M. Tanaka, M. Yamamoto, and M. Tada, J. Nucl. Mater. 191, 191 (1992).

    Article  Google Scholar 

  13. A. G. Zholnin and A. G. Zaluzhny\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Poverkhnost, No. 10, 33 (1986).

  14. I. Yu. Abdarashitov, K. V. Botvin, Sh. Sh. Ibragimov, et al., Preprint No. 2-80, IYaF AN KazSSR (Institute of Nuclear Physics, Kazakh Academy of Science, Alma-Ata, 1980).

  15. A. G. Zaluzhnyi, M. V. Cherednichenko-Alchevskii, O. M. Storozhuk, and A. G. Zholnin, At. Énerg. 56(5), 314 (1984).

    Google Scholar 

  16. F. Charsughi, Dissertation, Jül-2652 (Inst. für Festkörperforschung, Jülich, 1992).

  17. A. G. Zaluzhny\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), A. P. Komissarov, N. A. Makhlin, et al., Poverkhnost, No. 6, 51 (1983).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 71, No. 2, 2001, pp. 55–60.

Original Russian Text Copyright © 2001 by Zaluzhny\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Suvorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaluzhnyi, A.G., Suvorov, A.L. Effect of the saturation conditions and structure on the retention of helium in structural materials. Tech. Phys. 46, 186–191 (2001). https://doi.org/10.1134/1.1349274

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1349274

Keywords

Navigation