Skip to main content
Log in

Vectorial wave interaction in cubic photorefractive crystals

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An analytical theory of the polarization-degenerate interaction of light waves in cubic photorefractive crystals of the 23 and \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) space symmetry groups is proposed. The theory, based on a systematic use of the spatial symmetry properties and the σ-matrix apparatus, provides for a unified description of the polarization and orientation properties of the wave interactions, including the AC and DC methods for enhancement of the nonlinear response and the influence of optical activity, elastooptical effect, and spatial inhomogeneity. The application of the theory to the description of the properties of photorefractive crystals Bi12TiO20 and Bi12SiO20 shows a good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Photorefractive Materials and Their Applications, Ed. by P. Günter and J.-P. Huignard (Springer-Verlag, Berlin, 1988, 1989), Top. Appl. Phys., Vols. 61, 62.

    Google Scholar 

  2. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Nauka, St. Petersburg, 1992).

    Google Scholar 

  3. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Claredon Press, Oxford, 1996).

    Google Scholar 

  4. P. Refregier, L. Solymar, H. Rajbenbach, et al., J. Appl. Phys. 58, 45 (1985).

    Article  ADS  Google Scholar 

  5. S. I. Stepanov and M. P. Petrov, Opt. Commun. 53, 292 (1985).

    ADS  Google Scholar 

  6. E. Raita, A. A. Kamshilin, V. V. Prokofiev, et al., Appl. Phys. Lett. 70, 1641 (1997).

    Article  ADS  Google Scholar 

  7. A. A. Kamshilin, E. Raita, and A. V. Khomenko, J. Opt. Soc. Am. B 13, 2536 (1996).

    ADS  Google Scholar 

  8. E. Shamonina, K. H. Ringhofer, B. I. Sturman, et al., Opt. Lett. 23, 1435 (1998).

    ADS  Google Scholar 

  9. A. A. Kamshilin, E. Raita, and T. Jaaskelainen, Opt. Rev. 3, 443 (1996).

    Google Scholar 

  10. A. A. Izvanov, A. E. Mandel’, D. N. Khat’kov, et al., Avtometriya 2, 80 (1986).

    Google Scholar 

  11. S. I. Stepanov, S. M. Shandarov, and N. D. Khat’kov, Fiz. Tverd. Tela (Leningrad) 29, 3054 (1987) [Sov. Phys. Solid State 29, 1754 (1987)].

    Google Scholar 

  12. G. Pauliat, P. Mathey, and G. Roosen, J. Opt. Soc. Am. B 8, 1942 (1991).

    ADS  Google Scholar 

  13. S. M. Shandarov, A. Emelyanov, O. Kobozev, et al., Proc. SPIE 2801, 221 (1996).

    ADS  Google Scholar 

  14. M. Zgonik, K. Nakagava, and P. Günter, J. Opt. Soc. Am. B 12, 1416 (1995).

    ADS  Google Scholar 

  15. J. P. Herriau, D. Rojas, J. P. Huignard, et al., Ferroelectrics 75, 271 (1987).

    Google Scholar 

  16. S. F. Lyuksyutov, B. Buchhave, and M. V. Vasnetsov, Phys. Rev. Lett. 79, 67 (1997).

    Article  ADS  Google Scholar 

  17. N. V. Kukhtarev, G. E. Dovgalenko, and V. N. Starkov, Appl. Phys. A: Solid Surf. A 33, 227 (1984).

    Google Scholar 

  18. E. Shamonina, G. Cedilnik, M. Mann, et al., Appl. Phys. B: Lasers Opt. B 64, 49 (1997).

    ADS  Google Scholar 

  19. E. Shamonina, V. P. Kamenov, K. H. Ringhofer, et al., J. Opt. Soc. Am. B 15, 2552 (1998).

    ADS  Google Scholar 

  20. V. V. Shepelevich, N. N. Egorov, and V. Shepelevich, J. Opt. Soc. Am. B 11, 1394 (1994).

    ADS  Google Scholar 

  21. H. C. Pedersen and P. M. Johansen, J. Opt. Soc. Am. B 12, 592 (1995).

    ADS  Google Scholar 

  22. H. Tuovinen, A. A. Kamshilin, and J. Jaaskelainen, J. Opt. Soc. Am. B 14, 3383 (1997).

    ADS  Google Scholar 

  23. Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, Moscow, 1979; Mir, Moscow, 1982).

    Google Scholar 

  24. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Clarendon Press, Oxford, 1957; Mir, Moscow, 1969).

    Google Scholar 

  25. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1996; Pergamon, New York, 1977, 3rd ed.).

    Google Scholar 

  26. V. M. Galitskii, B. M. Karnakov, and V. I. Kogan, Problems in Quantum Mechanics (Nauka, Moscow, 1981).

    Google Scholar 

  27. A. G. Apostolidis, S. Mallik, D. Rouéde, et al., Opt. Commun. 56, 73 (1985).

    Article  ADS  Google Scholar 

  28. S. Mallik, D. Rouéde, and A. G. Apostolidis, J. Opt. Soc. Am. B 4, 1247 (1987).

    ADS  Google Scholar 

  29. A. Marrakchi, R. V. Johnson, and A. R. Tanguay, J. Opt. Soc. Am. B 3, 321 (1986).

    ADS  Google Scholar 

  30. V. V. Shepelevich, S. M. Shandarov, and A. E. Mandel, Ferroelectrics 110, 235 (1990).

    Google Scholar 

  31. J. R. Goff, J. Opt. Soc. Am. B 12, 99 (1995).

    ADS  Google Scholar 

  32. R. A. Suris and B. I. Fuks, Fiz. Tekh. Poluprovodn. (Leningrad) 9, 1717 (1975) [Sov. Phys. Semicond. 9, 1130 (1975)].

    Google Scholar 

  33. B. I. Sturman, M. Mann, J. Otten, et al., J. Opt. Soc. Am. B 10, 1919 (1993).

    ADS  Google Scholar 

  34. B. I. Sturman, T. E. McClelland, D. J. Webb, et al., J. Opt. Soc. Am. B 12, 1621 (1995).

    ADS  Google Scholar 

  35. C. S. K. Walsh, A. K. Powell, and T. J. Hall, J. Opt. Soc. Am. B 7, 288 (1990).

    ADS  Google Scholar 

  36. P. M. Johansen, H. C. Pedersen, E. V. Podivilov, et al., J. Opt. Soc. Am. B 16, 103 (1999).

    ADS  Google Scholar 

  37. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

    Google Scholar 

  38. D. J. Webb and L. Solymar, Opt. Commun. 83, 287 (1991).

    Article  ADS  Google Scholar 

  39. H. C. Ellin and L. Solymar, Opt. Commun. 130, 85 (1996).

    Article  ADS  Google Scholar 

  40. H. C. Pedersen, P. E. Andersen, and P. M. Johansen, Opt. Lett. 20, 2475 (1995).

    ADS  Google Scholar 

  41. M. Cronin-Golomb, B. Fisher, J. O. White, et al., IEEE J. Quantum Electron. 20, 12 (1984).

    Article  ADS  Google Scholar 

  42. S. G. Odulov, M. S. Soskin, and A. I. Khizhnyak, Lasers on Dynamical Lattices (Nauka, Moscow, 1990).

    Google Scholar 

  43. E. V. Podivilov, B. I. Sturman, H. C. Pedersen, et al., Phys. Rev. Lett. 85, 1867 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 119, No. 1, 2001, pp. 125–141.

Original Russian Text Copyright © 2001 by Sturman, Podivilov, Kamenov, Nippolainen, Kamshilin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturman, B.I., Podivilov, E.V., Kamenov, V.P. et al. Vectorial wave interaction in cubic photorefractive crystals. J. Exp. Theor. Phys. 92, 108–122 (2001). https://doi.org/10.1134/1.1348467

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1348467

Keywords

Navigation