Skip to main content
Log in

A stationary filamentary microwave discharge at a high pressure of argon

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A stationary discharge in the form of a filament about 1 mm in diameter is produced in a quartz tube 16 mm in diameter passed through the wider wall of a standard waveguide and field with argon at a pressure of 300 mm Hg at a microwave power of 50 W on a frequency of 7 GHz. The number of filaments increases gradually from one to seven as the power and pressure are increased. The filaments are parallel and oriented along the electric field of the wave. They are arranged symmetrically relative to the equatorial plane of the tube. The distance between the filaments decreases as their number increases. The stationary filaments arising due to ionization-overheating instability may be explained qualitatively using the interference-equilibrium model and assuming that a discharge is organized such as to provide for the maximal power absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Kapitsa, Dokl. Akad. Nauk SSSR 101, 245 (1955).

    Google Scholar 

  2. J. Allison, A. L. Gullen, and A. Zavody, Nature 193, 156 (1962).

    Google Scholar 

  3. A. M. Howatson, An Introduction to Gas Discharges (Pergamon, Oxford, 1976; Atomizdat, Moscow, 1980).

    Google Scholar 

  4. G. V. Bogomolov, Yu. D. Dubrovskii, A. A. Letunov, and V. D. Peskov, Zh. Éksp. Teor. Fiz. 93, 519 (1987) [Sov. Phys. JETP 66, 295 (1987)].

    Google Scholar 

  5. A. L. Vikharev, V. B. Gil’denburg, S. V. Golubev, et al., Zh. Éksp. Teor. Fiz. 94(4), 136 (1988) [Sov. Phys. JETP 67, 724 (1988)].

    ADS  Google Scholar 

  6. A. L. Vikharev, A. M. Gorbachev, A. V. Kim, et al., Fiz. Plazmy 18, 1064 (1992) [Sov. J. Plasma Phys. 18, 554 (1992)].

    Google Scholar 

  7. V. B. Gil’denburg and A. V. Kim, Fiz. Plazmy 6, 904 (1980) [Sov. J. Plasma Phys. 6, 496 (1980)].

    Google Scholar 

  8. A. V. Kim and G. M. Fraiman, Fiz. Plazmy 9, 613 (1983) [Sov. J. Plasma Phys. 9, 358 (1983)]

    Google Scholar 

  9. R. King and Tai Tsun Wu, Scattering and Diffraction of Waves (Harvard Univ. Press, Cambridge, 1959; Inostrannaya Literatura, Moscow, 1962).

    Google Scholar 

  10. E. A. Ivanov, Diffraction of Electromagnetic Waves on Two Bodies (Nauka i Tekhnika, Minsk, 1968).

    Google Scholar 

  11. V. V. Nikol’skii and T. I. Nikol’skaya, Electrodynamics and Transmission of Radiowaves (Nauka, Moscow, 1989).

    Google Scholar 

  12. Yu. P. Raizer, The Physics of Gas Discharge (Nauka, Moscow, 1987).

    Google Scholar 

  13. A. A. Skovoroda, Zh. Éksp. Teor. Fiz. 112, 877 (1997) [JETP 85, 474 (1997)].

    Google Scholar 

  14. A. V. Timofeev, Fiz. Plazmy 23, 176 (1997) [Plasma Phys. Rep. 23, 158 (1997)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 119, No. 1, 2001, pp. 91–98.

Original Russian Text Copyright © 2001 by Skovoroda, Zvonkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skovoroda, A.A., Zvonkov, A.V. A stationary filamentary microwave discharge at a high pressure of argon. J. Exp. Theor. Phys. 92, 78–85 (2001). https://doi.org/10.1134/1.1348463

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1348463

Keywords

Navigation