Skip to main content
Log in

On the spectral and statistical properties of Rayleigh-Taylor mixing

  • Nonlinear Dynamics
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

Dynamics of turbulent mixing due to the Rayleigh-Taylor instability is considered. The mixing layer consists of a single horizontal array of large-scale structures. The characteristics of these structures are studied by the spectral and statistical methods. Mixing stimulation by long-wavelength noise is studied. It is demonstrated that, for typical homogeneous unscaled noise, self-similarity ht 2 is retained. The threshold amplitude of random broadband noise is determined, below which this noise can be ignored. The mixing deceleration by the side boundaries is studied. The stimulation and deceleration effects sizably influence the mixing coefficient α+, increasing and decreasing it, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Sharp, Physica D (Amsterdam) 12, 3 (1984).

    ADS  MATH  Google Scholar 

  2. H.-J. Kull, Phys. Rep. 206, 197 (1991).

    Article  ADS  Google Scholar 

  3. N. A. Inogamov, Astrophys. Space Phys. Rev. 10(2), 1 (1999).

    ADS  Google Scholar 

  4. N. A. Inogamov, A. Yu. Dem’yanov, and É. E. Son, Hydrodynamics of Mixing (Mosk. Fiz.-Tekh. Inst., Moscow, 1999).

    Google Scholar 

  5. É. I. Asinovskii, V. A. Zeigarnik, E. F. Lebedev, et al., Pulsed MHD Transformers of Chemical Energy into Electrical Power, Ed. by A. E. Sheindlin and V. E. Fortov (Énergoatomizdat, Moscow, 1997).

    Google Scholar 

  6. J. Kane, D. Arnett, B. A. Remington, et al., Phys. Plasmas 6(5), 2065 (1999).

    Article  ADS  Google Scholar 

  7. O. M. Belotserkovskii, Numerical Simulation in Mechanics of Continuous Media (Fizmatgiz, Moscow, 1994, 2nd ed.).

    Google Scholar 

  8. O. M. Belotserkovskii and A. M. Oparin, Numerical Experiment in Turbulence: From Order to Chaos (Nauka, Moscow, 2000, 2nd ed.).

    Google Scholar 

  9. O. M. Belotserkovskii, V. A. Gushchin, and V. N. Kon’shin, Zh. Vychisl. Mat. Mat. Fiz. 27, 594 (1987).

    MathSciNet  Google Scholar 

  10. A. M. Oparin, in New in Numerical Simulation: Algorithms, Computing Experiments, Results, Ed. by A. S. Kholodov (Nauka, Moscow, 2000), p. 63.

    Google Scholar 

  11. S. Z. Belen’kii and E. S. Fradkin, Tr. Fiz. Inst. Akad. Nauk SSSR 29, 207 (1965).

    Google Scholar 

  12. V. E. Neuvazhaev, Prikl. Mekh. Tekh. Fiz., No. 6, 82 (1976).

  13. N. A. Inogamov, Pis’ma Zh. Tekh. Fiz. 4, 743 (1978) [Sov. Tech. Phys. Lett. 4, 299 (1978)].

    Google Scholar 

  14. M. B. Schneider, G. Dimonte, and B. Remington, Phys. Rev. Lett. 80, 3507 (1998).

    Article  ADS  Google Scholar 

  15. D. L. Youngs, Phys. Fluids A 3, 1312 (1991).

    Article  ADS  Google Scholar 

  16. K. I. Read, Physica D (Amsterdam) 12, 45 (1984).

    ADS  Google Scholar 

  17. Yu. V. Yanilkin, Vopr. At. Nauki Tekh., Ser.: Mat. Mod. Fiz. Protsessov, No. 4, 88 (1999).

  18. J. Glimm, J. W. Grove, X.-L. Li, et al., SIAM J. Sci. Comput. (USA) 19, 703 (1998).

    MathSciNet  Google Scholar 

  19. N. N. Anuchina, N. S. Es’kov, A. V. Polionov, et al., in Proceedings of the 6th International Workshop on the Physics of Compressible Turbulent Mixing (Imprimerie Caractere, Marseille, 1997).

    Google Scholar 

  20. M. D. Kamchibekov, E. E. Meshkov, N. V. Nevmerzhitskii, and E. A. Sotskov, Turbulent Mixing at the Cylindrical Gas-Liquid Interface, Preprint No. 46-96, VNIIÉF, RFYaTs (All-Russia Research Institute of Experimental Physics, Russian Federal Nuclear Center, Sarov, 1996).

    Google Scholar 

  21. U. Alon, J. Hecht, D. Ofer, and D. Shvarts, Phys. Rev. Lett. 74, 534 (1995).

    Article  ADS  Google Scholar 

  22. D. Ofer, U. Alon, D. Shvarts, et al., Phys. Plasmas 3, 3073 (1996).

    Article  ADS  Google Scholar 

  23. S. I. Anisimov, Ya. B. Zel’dovich, N. A. Inogamov, and M. F. Ivanov, in Shock Waves, Explosions and Detonation, Ed. by J. R. Bowen, J.-C. Leyer, and R. I. Soloukhin (AIAA, Washington, DC, 1983); Prog. Astronaut. Aeronaut. 87, 218 (1983).

    Google Scholar 

  24. N. A. Inogamov and A. M. Oparin, Zh. Éksp. Teor. Fiz. 116, 908 (1999) [JETP 89, 481 (1999)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 72, No. 10, 2000, pp. 704–710.

Original Russian Text Copyright © 2000 by Oparin, Inogamov, Dem’yanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oparin, A.M., Inogamov, N.A. & Dem’yanov, A.Y. On the spectral and statistical properties of Rayleigh-Taylor mixing. Jetp Lett. 72, 490–494 (2000). https://doi.org/10.1134/1.1343149

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1343149

PACS numbers

Navigation