Skip to main content
Log in

Earth optimization of space experiment on growth of germanium by floating-zone technique with the use of rotating magnetic fields

  • Crystal Growth
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The results are considered of the earth experiments on growth of high-purity and Ga-doped germanium single crystals 15 mm in diameter and 60 mm in length, which were performed in a Zona-4 “space furnace” under the technological regimes close to those existing in space orbits. It is shown that the use of a magnetohydrodynamic (MHD) factor [weak (0.15–0.2 mT) rotational (400 Hz) magnetic fields] during crystallization of semiconductors by the floating-zone technique is a very promising method for control of dopant distributions and electrophysical properties in a growing crystal. It is shown that in such magnetic fields, the effective coefficient of Ga distribution in Ge decreases by 10%. The shift of the donor-acceptor balance of the residual dopants in a compensated semiconductor during growth with the MHD-stirring of the melt was first established in growth of undoped germanium single crystals. It was also established that magnetic fields produce different effects on the resistivity microinhomogeneity in undoped and doped crystals. The mechanisms of the MHD effect on the properties of the grown crystals are discussed as well as the perspectives of performing analogous experiments aboard spacecrafts. It is predicted that, under the microgravitation conditions, the effects revealed in terrestrial experiments would be more pronounced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. É. S. Kopeliovich, V. V. Rakov, and N. A. Verezub, Tsvetn. Met. (Moscow), No. 8, 52 (1991).

  2. A. V. Kartavykh, É. S. Kopeliovich, M. G. Mil’vidskii, and V. V. Rakov, Kristallografiya 43(6), 1136 (1998) [Crystallogr. Rep. 43, 1075 (1998)].

    Google Scholar 

  3. A. V. Kartavykh, E. S. Kopeliovich, M. G. Mil’vidskii, and V. V. Rakov, J. Cryst. Growth 205(4), 497 (1999).

    Article  Google Scholar 

  4. M. G. Mil’vidskii, A. V. Kartavykh, E. S. Kopeliovich, et al., Journal of Journals (UNESCO) 2(1), 6 (1998).

    Google Scholar 

  5. A. V. Kartavykh, Kristallografiya 45(6), 2352 (2000) [Crystallogr. Rep. 45, 1024 (2000)].

    Google Scholar 

  6. M. G. Mil’vidskii, N. A. Verezub, A. V. Kartavykh, et al., Kristallografiya 42(5), 913 (1997) [Crystallogr. Rep. 42 (5), 843 (1997)].

    Google Scholar 

  7. M. T. Devdariani, O. V. Pelevin, A. I. Prostomolotov, et al., Preprint No. 516, IPM RAN (Institute for Problems of Mechanics, Russian Academy of Sciences, Moscow, 1992), No. 516, p. 32.

  8. A. B. Kapusta and A. F. Zibol’d, Magn. Gidrodin., No. 1, 77 (1983).

  9. A. B. Kapusta, Magn. Gidrodin., No. 1, 63 (1984).

  10. J. Burton, R. Prim, and W. Slichter, J. Chem. Phys. 21(11), 1987 (1953).

    Google Scholar 

  11. W. C. Johnston and W. A. Tiller, Trans. AIME 221, 331 (1961).

    Google Scholar 

  12. I. V. Barmin, A. V. Egorov, V. N. Kurokhtin, et al., in Proceedings of Joint X European and VI Russia Symposium on Physical Science in Microgravity, St. Petersburg, 1997, Vol. II, p. 325.

  13. I. V. Barmin and A. S. Senchenkov, Fluid Dyn. 29(5), 620 (1994).

    Article  Google Scholar 

  14. A. V. Kartavykh, É. S. Kopeliovich, M. G. Mil’vidskii, et al., Kristallografiya 42(4), 755 (1997) [Crystallogr. Rep. 42, 694 (1997)].

    Google Scholar 

  15. N. S. Rytova, E. S. Yurova, and V. V. Karataev, Fiz. Tekh. Poluprovodn. (Leningrad) 14(10), 1979 (1980) [Sov. Phys. Semicond. 14, 1176 (1980)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kristallografiya, Vol. 46, No. 1, 2001, pp. 159–164.

Original Russian Text Copyright © 2001 by Kartavykh, Kopeliovich, Mil’vidski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Rakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartavykh, A.V., Kopeliovich, É.S., Mil’vidskii, M.G. et al. Earth optimization of space experiment on growth of germanium by floating-zone technique with the use of rotating magnetic fields. Crystallogr. Rep. 46, 148–153 (2001). https://doi.org/10.1134/1.1343144

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1343144

Keywords

Navigation