Skip to main content

Study of the time correlation function of scattered light in bounded strongly inhomogeneous media

Abstract

The time correlation function of the multiply scattered light by a medium comprised of finite-size scatterers is studied theoretically and experimentally. A solution of the Bethe-Salpeter equation for the time correlation function is sought in the P 2-approximation in the form of a series of terms of the Legendre polynomials. With allowance for the boundedness of the medium, the problem is reduced to a generalized Milne equation, which is solved by the Wiener-Hopf method. The time dependence of the correlation function is studied experimentally in a concentrated latex suspension for particles of different sizes. The results of numerical calculations are in qualitative agreement with the measured dependence of the time correlation function on the scatterer size.

This is a preview of subscription content, access via your institution.

References

  1. D. J. Pine, D. A. Weitz, G. Maret, et al., in Scattering and Localization of Classical Waves in Random Media, Ed. by P. Sheng (World Scientific, Singapore, 1989).

    Google Scholar 

  2. P. E. Wolf and G. Maret, in Scattering in Volumes and Surfaces, Ed. by M. Nieto-Vesperanos and J. C. Dainty (Elsevier, Amsterdam, 1990), p. 37.

    Google Scholar 

  3. Yu. N. Barabanenkov, Yu. A. Kravtsov, V. D. Ozrin, and A. I. Saichev, Prog. Opt. 29, 247 (1991).

    Google Scholar 

  4. V. L. Kuz’min and V. P. Romanov, Usp. Fiz. Nauk 166, 247 (1996).

    Google Scholar 

  5. A. Lagendijk and B. A. van Tiggelen, Phys. Rep. 270, 145 (1996).

    Article  ADS  Google Scholar 

  6. A. G. Yodh and B. Chance, Phys. Today, March, 34 (1995).

  7. G. Maret and P. Wolf, Z. Phys. B 65, 409 (1987).

    Article  ADS  Google Scholar 

  8. D. A. Weitz, D. J. Pine, P. N. Pusey, and R. J. A. Tough, Phys. Rev. Lett. 63, 1747 (1989).

    Article  ADS  Google Scholar 

  9. X.-L. Wu, D. J. Pine, P. M. Chaikin, et al., J. Opt. Soc. Am. B 7, 15 (1990).

    ADS  Google Scholar 

  10. D. Bicout and R. Maynard, Physica A (Amsterdam) 199, 387 (1993).

    ADS  Google Scholar 

  11. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, Proc. Natl. Acad. Sci. USA 91, 4887 (1994).

    Article  ADS  Google Scholar 

  12. D. Bicout and G. Maret, Physica A (Amsterdam) 210, 87 (1994).

    ADS  Google Scholar 

  13. D. A. Boas, L. E. Campbell, and A. G. Yodh, Phys. Rev. Lett. 75, 1855 (1995).

    Article  ADS  Google Scholar 

  14. D. Bicout and R. Maynard, Physica B (Amsterdam) 204, 20 (1995).

    ADS  Google Scholar 

  15. M. Heckmeier and G. Maret, Europhys. Lett. 34, 257 (1996).

    Article  ADS  Google Scholar 

  16. M. Heckmeier, S. E. Scipetrov, G. Maret, and R. Maynard, J. Opt. Soc. Am. A 14, 185 (1997).

    Article  ADS  Google Scholar 

  17. T. C. Lubensky and A. G. Yodh, J. Opt. Soc. Am. A 14, 156 (1997).

    ADS  Google Scholar 

  18. S. E. Scipetrov, Europhys. Lett. 40, 381 (1997).

    Article  ADS  Google Scholar 

  19. V. V. Tuchin, Usp. Fiz. Nauk 167, 517 (1997).

    Article  Google Scholar 

  20. S. E. Skipetrov and I. V. Meglinskii, Zh. Éksp. Teor. Fiz. 113, 1213 (1998) [JETP 86, 661 (1998)].

    Google Scholar 

  21. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  22. L. A. Apresyan and Yu. A. Kravtsov, The Theory of Radiative Transfer (Nauka, Moscow, 1983).

    Google Scholar 

  23. D. A. Boas, H. Liu, M. A. O’Leary, et al., Proc. SPIE 2389, 240 (1995).

    Article  ADS  Google Scholar 

  24. V. L. Kuz’min and V. P. Romanov, Zh. Éksp. Teor. Fiz. 113, 2022 (1998) [JETP 86, 1107 (1998)].

    Google Scholar 

  25. V. L. Kuz’min, Opt. Spektrosk. 86, 994 (1999) [Opt. Spectrosc. 86, 893 (1999)].

    Google Scholar 

  26. A. A. Golubentsev, Zh. Éksp. Teor. Fiz. 86, 47 (1984) [Sov. Phys. JETP 59, 26 (1984)].

    ADS  Google Scholar 

  27. B. Davison, Neutron Transport Theory (Oxford Univ. Press, London, 1957; Atomizdat, Moscow, 1960).

    MATH  Google Scholar 

  28. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostrannaya Literatura, Moscow, 1958).

    MATH  Google Scholar 

  29. E. E. Gorodnichev, S. L. Dudarev, and D. B. Rogozkin, Zh. Éksp. Teor. Fiz. 96, 847 (1989) [Sov. Phys. JETP 69, 481 (1989)].

    Google Scholar 

  30. E. E. Gorodnichev, S. L. Dudarev, and D. B. Rogozkin, Phys. Lett. A 144, 48 (1990).

    Article  ADS  Google Scholar 

  31. V. L. Kuz’min and V. P. Romanov, Zh. Éksp. Teor. Fiz. 116, 1912 (1999) [JETP 89, 1035 (1999)].

    Google Scholar 

  32. V. L. Kuz’min and E. V. Aksenova, Opt. Spektrosk. 87(3), 461 (1999) [Opt. Spectrosc. 87, 426 (1999)].

    Google Scholar 

  33. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957; Inostrannaya Literatura, Moscow, 1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Optika i Spektroskopiya, Vol. 89, No. 6, 2000, pp. 1022–1031.

Original Russian Text Copyright © 2000 by Kuzmin, Romanov, Aksenova, Runova.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuzmin, V.L., Romanov, V.P., Aksenova, E.V. et al. Study of the time correlation function of scattered light in bounded strongly inhomogeneous media. Opt. Spectrosc. 89, 945–954 (2000). https://doi.org/10.1134/1.1335048

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1335048

Keywords

  • Multiple Scattering
  • Legendre Polynomial
  • Inhomogeneous Medium
  • Diffusion Approximation
  • Brownian Particle