Abstract
The time correlation function of the multiply scattered light by a medium comprised of finite-size scatterers is studied theoretically and experimentally. A solution of the Bethe-Salpeter equation for the time correlation function is sought in the P 2-approximation in the form of a series of terms of the Legendre polynomials. With allowance for the boundedness of the medium, the problem is reduced to a generalized Milne equation, which is solved by the Wiener-Hopf method. The time dependence of the correlation function is studied experimentally in a concentrated latex suspension for particles of different sizes. The results of numerical calculations are in qualitative agreement with the measured dependence of the time correlation function on the scatterer size.
This is a preview of subscription content, access via your institution.
References
D. J. Pine, D. A. Weitz, G. Maret, et al., in Scattering and Localization of Classical Waves in Random Media, Ed. by P. Sheng (World Scientific, Singapore, 1989).
P. E. Wolf and G. Maret, in Scattering in Volumes and Surfaces, Ed. by M. Nieto-Vesperanos and J. C. Dainty (Elsevier, Amsterdam, 1990), p. 37.
Yu. N. Barabanenkov, Yu. A. Kravtsov, V. D. Ozrin, and A. I. Saichev, Prog. Opt. 29, 247 (1991).
V. L. Kuz’min and V. P. Romanov, Usp. Fiz. Nauk 166, 247 (1996).
A. Lagendijk and B. A. van Tiggelen, Phys. Rep. 270, 145 (1996).
A. G. Yodh and B. Chance, Phys. Today, March, 34 (1995).
G. Maret and P. Wolf, Z. Phys. B 65, 409 (1987).
D. A. Weitz, D. J. Pine, P. N. Pusey, and R. J. A. Tough, Phys. Rev. Lett. 63, 1747 (1989).
X.-L. Wu, D. J. Pine, P. M. Chaikin, et al., J. Opt. Soc. Am. B 7, 15 (1990).
D. Bicout and R. Maynard, Physica A (Amsterdam) 199, 387 (1993).
D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, Proc. Natl. Acad. Sci. USA 91, 4887 (1994).
D. Bicout and G. Maret, Physica A (Amsterdam) 210, 87 (1994).
D. A. Boas, L. E. Campbell, and A. G. Yodh, Phys. Rev. Lett. 75, 1855 (1995).
D. Bicout and R. Maynard, Physica B (Amsterdam) 204, 20 (1995).
M. Heckmeier and G. Maret, Europhys. Lett. 34, 257 (1996).
M. Heckmeier, S. E. Scipetrov, G. Maret, and R. Maynard, J. Opt. Soc. Am. A 14, 185 (1997).
T. C. Lubensky and A. G. Yodh, J. Opt. Soc. Am. A 14, 156 (1997).
S. E. Scipetrov, Europhys. Lett. 40, 381 (1997).
V. V. Tuchin, Usp. Fiz. Nauk 167, 517 (1997).
S. E. Skipetrov and I. V. Meglinskii, Zh. Éksp. Teor. Fiz. 113, 1213 (1998) [JETP 86, 661 (1998)].
A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978; Mir, Moscow, 1981).
L. A. Apresyan and Yu. A. Kravtsov, The Theory of Radiative Transfer (Nauka, Moscow, 1983).
D. A. Boas, H. Liu, M. A. O’Leary, et al., Proc. SPIE 2389, 240 (1995).
V. L. Kuz’min and V. P. Romanov, Zh. Éksp. Teor. Fiz. 113, 2022 (1998) [JETP 86, 1107 (1998)].
V. L. Kuz’min, Opt. Spektrosk. 86, 994 (1999) [Opt. Spectrosc. 86, 893 (1999)].
A. A. Golubentsev, Zh. Éksp. Teor. Fiz. 86, 47 (1984) [Sov. Phys. JETP 59, 26 (1984)].
B. Davison, Neutron Transport Theory (Oxford Univ. Press, London, 1957; Atomizdat, Moscow, 1960).
P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostrannaya Literatura, Moscow, 1958).
E. E. Gorodnichev, S. L. Dudarev, and D. B. Rogozkin, Zh. Éksp. Teor. Fiz. 96, 847 (1989) [Sov. Phys. JETP 69, 481 (1989)].
E. E. Gorodnichev, S. L. Dudarev, and D. B. Rogozkin, Phys. Lett. A 144, 48 (1990).
V. L. Kuz’min and V. P. Romanov, Zh. Éksp. Teor. Fiz. 116, 1912 (1999) [JETP 89, 1035 (1999)].
V. L. Kuz’min and E. V. Aksenova, Opt. Spektrosk. 87(3), 461 (1999) [Opt. Spectrosc. 87, 426 (1999)].
H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957; Inostrannaya Literatura, Moscow, 1961).
Author information
Authors and Affiliations
Additional information
__________
Translated from Optika i Spektroskopiya, Vol. 89, No. 6, 2000, pp. 1022–1031.
Original Russian Text Copyright © 2000 by Kuzmin, Romanov, Aksenova, Runova.
Rights and permissions
About this article
Cite this article
Kuzmin, V.L., Romanov, V.P., Aksenova, E.V. et al. Study of the time correlation function of scattered light in bounded strongly inhomogeneous media. Opt. Spectrosc. 89, 945–954 (2000). https://doi.org/10.1134/1.1335048
Received:
Issue Date:
DOI: https://doi.org/10.1134/1.1335048
Keywords
- Multiple Scattering
- Legendre Polynomial
- Inhomogeneous Medium
- Diffusion Approximation
- Brownian Particle