Skip to main content
Log in

Bipolarons in a KCl melt

  • Fluids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A theory of two excess electrons in alkali halide melts is developed using variational estimates of path integrals. As a result of the strong screening, the average field generated by the ions has little influence on the electrons and the problem reduces to a study of a bipolaron type of free energy functional. The behavior of this functional is determined as a function of the thermodynamic and structural characteristics of the melt. Variational bipolaron calculations are made using the approximation of uncorrelated electrons and using Kohn-Sham theory to allow for electron-electron correlations. The results of the calculations using Kohn-Sham theory agree with the data obtained by quantum molecular dynamics and show that a correct choice of trial wave function which allows explicitly for the correlation of two electrons is required to obtain a correct estimate of bipolaron stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Stoneham, Theory of Defects in Solids: the Electronic Structure of Defects in Insulators and Semiconductors (Clarendon Press, Oxford, 1975; Mir, Moscow, 1979).

    Google Scholar 

  2. N. R. Kestner, in Electron-Solvent and Anion-Solvent Interactions, Ed. by L. Kevan and B. C. Webster (Elsevier, Amsterdam, 1976).

    Google Scholar 

  3. A. S. Aleksandrov and N. F. Mott, Rep. Prog. Phys. 57, 1289 (1994).

    Google Scholar 

  4. J. C. Scott, P. Pfluger, M. T. Krounby, and G. B. Street, Phys. Rev. B 28, 2140 (1983).

    Article  ADS  Google Scholar 

  5. A. Selloni, M. Parrinello, R. Car, and P. Carevali, J. Phys. Chem. 91, 4947 (1987).

    Article  Google Scholar 

  6. E. S. Fois, A. Selloni, M. Parrinello, and R. Car, J. Phys. Chem. 92, 3268 (1988).

    Article  Google Scholar 

  7. E. S. Fois, A. Selloni, and M. Parrinello, Phys. Rev. B 39, 4812 (1989).

    Article  ADS  Google Scholar 

  8. H. P. Kaukonen, R. N. Barnett, and U. Landman, J. Chem. Phys. 97, 1365 (1992).

    Article  ADS  Google Scholar 

  9. G. Martyna, Z. Deng, and M. L. Klein, J. Chem. Phys. 98, 555 (1993).

    Article  ADS  Google Scholar 

  10. Z. Deng, G. Martyna, and M. L. Klein, Phys. Rev. Lett. 71, 267 (1993).

    Article  ADS  Google Scholar 

  11. S. I. Pekar, Investigation on Electronic Theory of Crystals (Gostekhizdat, Moscow, 1951).

    Google Scholar 

  12. V. L. Vinetskii and M. Sh. Giterman, Zh. Ésp. Teor. Fiz. 33, 730 (1957) [Sov. Phys. JETP 6, 560 (1957)].

    Google Scholar 

  13. H. Hiramoto and Y. Toyozawa, J. Phys. Soc. Jpn. 54, 245 (1985).

    Article  Google Scholar 

  14. D. Emin and M. S. Hilery, Phys. Rev. B 39, 6575 (1989).

    Article  ADS  Google Scholar 

  15. V. L. Vinetskii, O. Meredov, and V. A. Yanchuk, Teor. Éksp. Khim. 25, 631 (1989).

    Google Scholar 

  16. D. F. Feng, K. Feuki, and L. Kevan, J. Chem. Phys. 58, 3281 (1973).

    Article  Google Scholar 

  17. G. N. Chuev, Zh. Éksp. Teor. Fiz. 115, 1463 (1999) [JETP 88, 807 (1999)].

    Google Scholar 

  18. G. N. Chuev and V. V. Sychyov, J. Chem. Phys. 112, 4707 (2000).

    Article  ADS  Google Scholar 

  19. S. L. Lundquist and N. H. March, Theory of the Inhomogeneous Electron Gas (Plenum, New York, 1983; Mir, Moscow, 1987).

    Google Scholar 

  20. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Article  ADS  Google Scholar 

  21. M. Boulahbak et al., J. Chem. Phys. 108, 2111 (1998).

    Article  ADS  Google Scholar 

  22. Stu Samuel, Phys. Rev. D 18, 1916 (1978).

    ADS  MathSciNet  Google Scholar 

  23. A. L. Kholodenko and A. L. Beyerlein, Phys. Rev. A 34, 3309 (1986).

    Article  ADS  Google Scholar 

  24. A. L. Kholodenko and C. Qian, Phys. Rev. B 40, 2477 (1989).

    Article  ADS  Google Scholar 

  25. I. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  ADS  Google Scholar 

  26. M. V. Fedoryuk, Saddle Point Approximation (Nauka, Moscow, 1977).

    Google Scholar 

  27. I. R. Yukhnovskii and M. F. Golovko, Statistical Theory of Classical Equilibrium Systems (Naukova Dumka, Kiev, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 118, No. 5, 2000, pp. 1134–1142.

Original Russian Text Copyright © 2000 by Chuev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuev, G.N. Bipolarons in a KCl melt. J. Exp. Theor. Phys. 91, 983–990 (2000). https://doi.org/10.1134/1.1334988

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1334988

Keywords

Navigation