Skip to main content
Log in

Bipolar harmonics method in the semiclassical theory of sub-doppler cooling

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The bipolar harmonics method is extended to the case of complex elliptic polarization vectors. The method is used to study, on the basis of the semiclassical theory, the multipole moments of the ground state of atoms under conditions of sub-Doppler cooling with a monochromatic light field possessing spatial gradients of the polarization. It is shown that for stationary atoms with an initial isotropic distribution over sublevels the multipole moments of rank κ decompose, in accordance with the parity κ of the rank, according to one of two minimal sets of bipolar harmonics with different symmetry under inversion. An expansion of the corrections, which are linear in the velocity, to the multipole moments with respect to the indicated minimal sets of bipolar harmonics is studied for a stationary state, and the expansion coefficients are analyzed. The orientation vector J of the atomic ensemble is studied on the basis of the proposed method for the dipole transition 1/2 → 1/2, and the light-induced forces for a specific 2D configuration of the light field, including radiation friction forces and Lorentz-type forces, are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. L. Manakov, S. I. Marmo, and A. V. Meremianin, J. Phys. B 29, 2711 (1996).

    Article  ADS  Google Scholar 

  2. N. L. Manakov, A. V. Meremianin, and A. Starace, Phys. Rev. A 61, 022103 (2000).

    Google Scholar 

  3. N. L. Manakov, A. V. Meremianin, and A. F. Starace, Phys. Rev. A 57, 3233 (1998).

    Article  ADS  Google Scholar 

  4. G. Nienhuis, A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Europhys. Lett. 44, 20 (1998).

    Article  ADS  Google Scholar 

  5. A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Europhys. Lett. 45, 301 (1999).

    Article  ADS  Google Scholar 

  6. J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989).

    ADS  Google Scholar 

  7. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Scientific, Singapore, 1988).

    Google Scholar 

  8. N. Ya. Vilenkin, Special Functions and the Theory of Group Representations (Nauka, Moscow, 1965; American Mathematical Society, Providence, 1968).

    Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

    Google Scholar 

  10. G. Nienhuis, P. van der Straten, and S.-Q. Shang, Phys. Rev. A 44, 462 (1991).

    Article  ADS  Google Scholar 

  11. A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Zh. Éksp. Teor. Fiz. 110, 1727 (1996) [JETP 83, 949 (1996)].

    Google Scholar 

  12. A. V. Bezverbnyi, G. Nienhuis, and A. M. Tumaikin, Opt. Commun. 148, 151 (1998).

    Article  ADS  Google Scholar 

  13. A. V. Taichenachev, A. M. Tumaikin, V. I. Yudin, and G. Nienhuis, Zh. Éksp. Teor. Fiz. 108, 415 (1995) [JETP 81, 224 (1995)].

    Google Scholar 

  14. V. S. Smirnov, A. M. Tumaikin, and V. I. Yudin, Zh. Éksp. Teor. Fiz. 96, 1613 (1989) [Sov. Phys. JETP 69, 913 (1989)].

    Google Scholar 

  15. K. Blum, Density Matrix Theory and Its Applications (Plenum, New York, 1981; Mir, Moscow, 1983).

    Google Scholar 

  16. A. M. Tumaikin, Doctoral Dissertation in Mathematical Physics (Novosibirsk State Univ., Novosibirsk, 1989).

    Google Scholar 

  17. A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin (2000) (in press).

  18. V. Finkelstein, P. R. Berman, and J. Guo, Phys. Rev. A 45, 1829 (1992).

    Article  ADS  Google Scholar 

  19. P. Berman, G. Rogers, and B. Dubetsky, Phys. Rev. A 48, 1506 (1993).

    Article  ADS  Google Scholar 

  20. F. Mauri and E. Arimondo, Europhys. Lett. 8, 171 (1991).

    Google Scholar 

  21. O. N. Prudnikov, A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Pis’ma Zh. Éksp. Teor. Fiz. 70, 439 (1999) [JETP Lett. 70, 443 (1999)].

    Google Scholar 

  22. K. Petsas, A. Coates, and G. Grinberg, Phys. Rev. A 50, 5173 (1994).

    Article  ADS  Google Scholar 

  23. A. V. Bezverbnyi, V. S. Smirnov, and A. M. Tumaikin, Zh. Éksp. Teor. Fiz. 105, 62 (1994) [JETP 78, 33 (1994)].

    Google Scholar 

  24. I. M. Gel’fand, R. V. Minlos, and Z. Ya. Shapiro, Representations of the Rotation and Lorentz Groups and Their Applications (Fizmatgiz, Moscow, 1958; Pergamon, Oxford, 1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 118, No. 5, 2000, pp. 1066–1083.

Original Russian Text Copyright © 2000 by Bezverbny\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezverbnyi, A.V. Bipolar harmonics method in the semiclassical theory of sub-doppler cooling. J. Exp. Theor. Phys. 91, 921–937 (2000). https://doi.org/10.1134/1.1334982

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1334982

Keywords

Navigation