Skip to main content
Log in

Impact of a high-velocity drop on an obstacle

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Processes arising when a high-velocity liquid drop strikes a rigid obstacle or a liquid layer were investigated using numerical simulation. The flow pattern being formed features a complicated interaction of compression shock and expansion waves between each other and with free surfaces, the initiation of a cumulative jet flow, and the formation of cavitation areas. Factors governing the interaction process are analyzed. Obtained results are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erosion, Ed. by C. Preece (Academic, New York, 1979; Mir, Moscow, 1982).

    Google Scholar 

  2. G. S. Springer, Erosion by Liquid Impact (Scripta, Washington, 1976; Moscow, 1981).

    Google Scholar 

  3. M. Rein, in Proceedings of IUTAM Symposium on Waves in Liquid/Gas and Liquid/Vapor Two-Phase Systems, 1995, pp. 171–190.

  4. D. N. Contractor, J. Fluids Eng. 94(2), 207 (1972).

    Google Scholar 

  5. M. Rein, Fluid Dyn. Res. 12, 61 (1993).

    Article  Google Scholar 

  6. J. G. Black and G. H. Miller, in Abstracts of the 21st International Symposium on Shock Waves, 1997, p. 25.

  7. A. A. Korobkin and V. V. Pukhnachov, Annu. Rev. Fluid Mech. 20, 159 (1988).

    Article  ADS  Google Scholar 

  8. A. L. Gonor and V. Ya. Rivkind, Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza 17 (1982).

  9. M. Lesser and J. Field, Annu. Rev. Fluid Mech. 15, 97 (1983).

    Article  ADS  Google Scholar 

  10. I. A. Dukhovskii and P. I. Kovalev, Prib. Tekh. Éksp., No. 6, 102 (1996).

  11. J. Brunton and J. J. Camus, in Proceedings of the III International Conference on Rain Erosion, 1970, p. 327.

  12. M. Lesser and J. Field, in Proceedings of the XVIII International Symposium on Shock Waves, 1991, p. 61.

  13. S. Ridah, J. Appl. Phys. 64(1), 152 (1988).

    Article  ADS  Google Scholar 

  14. A. V. Chizhov and A. A. Shmidt, Pis’ma Zh. Tekh. Fiz. 22(3), 57 (1997) [Tech. Phys. Lett. 22, 117 (1997)].

    Google Scholar 

  15. F. J. Heymann, J. Appl. Phys. 40, 5113 (1969).

    Article  Google Scholar 

  16. M. Lesser, Proc. R. Soc. London, Ser. A 377(1770), 289 (1981).

    ADS  MathSciNet  Google Scholar 

  17. A. V. Chizhov, Candidate’s Dissertation in Mathematical Physics (St. Petersburg State Technical University, St. Petersburg, 1998).

    Google Scholar 

  18. I. A. Dukhovskii, P. I. Kovalev, and A. A. Shmidt, Pis’ma Zh. Tekh. Fiz. 10(11), 649 (1984) [Sov. Tech. Phys. Lett. 10, 274 (1984)].

    Google Scholar 

  19. J. P. Dear and J. E. Field, J. Appl. Phys. 63(4), 1015 (1988).

    Article  ADS  Google Scholar 

  20. A. I. Ivandaev, A. G. Kutushev, and R. I. Nigmatulin, Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza 16, 209 (1981).

    Google Scholar 

  21. A. V. Chizhov and A. A. Schmidt, in Proceedings of the IX International Conference on Finite Elements in Fluids, Italy, 1995, Vol. 2, p. 1019.

  22. M. Hirano, K. Tokayama, and J. Falcovitz, in Proceed-ings of the 21st International Symposium on Shock Waves, 1997, p. 192.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 70, No. 12, 2000, pp. 18–27.

Original Russian Text Copyright © 2000 by Chizhov, Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chizhov, A.V., Schmidt, A.A. Impact of a high-velocity drop on an obstacle. Tech. Phys. 45, 1529–1537 (2000). https://doi.org/10.1134/1.1333189

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1333189

Keywords

Navigation