Skip to main content
Log in

Effect of coulomb losses on the spectra of heavy particles accelerated in prolonged solar events

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

This paper examines the possibility of using the energy spectra of accelerated solar cosmic-ray ions and features formed by Coulomb losses to study the solar plasma (the power-law index S for the scattering turbulence, particle number density N, and temperature T of the background medium). For an individual solar flare, Coulomb losses can be manifest to different degrees in the spectra of different ions, providing a means to determine S. A comparison of theoretical spectra for H, He, C, O, and Fe ions with observed spectra for the prolonged solar flare of October 20, 1995 yields S≈3, N≈5×109 cm−3, and T≈106 K, assuming that the characteristic time scale over which these particles gain energy is about a second.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. V. Cane, R. E. McGuire, and T. T. von Rosenvinge, Astrophys. J. 301, 448 (1986).

    Article  ADS  Google Scholar 

  2. M. A. Lee and J. M. Ryan, Astrophys. J. 303, 829 (1986).

    Article  ADS  Google Scholar 

  3. S. V. Bulanov and P. V. Sasorov, Astron. Zh. 52, 763 (1975) [Sov. Astron. 19, 464 (1975)].

    ADS  Google Scholar 

  4. Yu. E. Litvinenko and B. V. Somov, Sol. Phys. 158, 317 (1995).

    ADS  Google Scholar 

  5. M. Temerin and I. Roth, Astrophys. J. Lett. 391, L105 (1992).

    Article  ADS  Google Scholar 

  6. G. E. Kocharov, Itogi Nauki Tekh., Ser. Astron. 32, 43 (1987).

    Google Scholar 

  7. D. V. Reames, J. P. Meyer, and T. T. von Rosenvinge, Astrophys. J., Suppl. Ser. 90, 649 (1994).

    Article  ADS  Google Scholar 

  8. S. W. Kahler, N. R. Sheeley, R. A. Howard, et al., J. Geophys. Res. 89, 9683 (1984).

    ADS  Google Scholar 

  9. I. N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (Nauka, Moscow, 1983; Reidel, Dordrecht, 1985).

    Google Scholar 

  10. E. G. Berezhko, V. K. Elshin, G. F. Krymskii, and S. N. Petukhov, Cosmic-Ray Generation by Shock Waves [in Russian] (Nauka, Novosibirsk, 1988).

    Google Scholar 

  11. S. V. Bulanov and V. A. Dogel’, Pis’ma Astron. Zh. 5, 521 (1979) [Sov. Astron. Lett. 5, 278 (1979)].

    ADS  Google Scholar 

  12. J. Steinacker, U. Jaekel, and R. Schlickeiser, Astrophys. J. 415, 342 (1993).

    Article  ADS  Google Scholar 

  13. Yu. E. Litvinenko, AIP Conf. Proc. 374, 498 (1996).

    ADS  Google Scholar 

  14. V. M. Ostryakov, Yu. Yu. Kartavykh, and G. A. Koval’tsov, Pis’ma Astron. Zh. 26(2), 152 (2000) (in press) [Astron. Lett. 26, 122 (2000)].

    Google Scholar 

  15. I. G. Kurganov and V. M. Ostryakov, Pis’ma Astron. Zh. 17, 177 (1991) [Sov. Astron. Lett. 17, 77 (1991)].

    ADS  Google Scholar 

  16. V. M. Ostryakov and M. F. Stovpyuk, Pis’ma Astron. Zh. 25, 935 (1999) [Astron. Lett. 25, 819 (1999)].

    Google Scholar 

  17. A. M. Luhn and D. Hovestadt, Astrophys. J. 317, 852 (1987).

    ADS  Google Scholar 

  18. K. Hasselmann and G. Wibberenz, Z. Geophys. 34, 353 (1968).

    Google Scholar 

  19. R. Schlickeiser, Astrophys. J. 336, 264 (1989).

    ADS  Google Scholar 

  20. J. Steinacker and J. A. Miller, Astrophys. J. 393, 764 (1992).

    Article  ADS  Google Scholar 

  21. A. A. Korchak, Sol. Phys. 66, 149 (1980).

    Article  ADS  Google Scholar 

  22. R. Schlickeiser, A. Campeanu, and I. Lerche, Astron. Astrophys. 276, 614 (1993).

    ADS  Google Scholar 

  23. M. Arnaud and J. Raymond, Astrophys. J. 398, 394 (1992).

    Article  ADS  Google Scholar 

  24. G. M. Mason, J. E. Mazur, M. D. Looper, and R. A. Mewaldt, Astrophys. J. 452, 901 (1995).

    Article  ADS  Google Scholar 

  25. M. Oetliker, B. Klecker, D. Hovestadt, et al., Astrophys. J. 477, 495 (1997).

    Article  ADS  Google Scholar 

  26. E. Möbius and M. Popecki, http://www.scl.caltech.edu/ ACE/ACENews_curr.html (1998).

  27. D. V. Reames, L. M. Barbier, T. T. von Rosenvinge, et al., Astrophys. J. 483, 515 (1997).

    Article  ADS  Google Scholar 

  28. H. V. Cane, D. V. Reames, and T. T. von Rosenvinge, Astrophys. J. 373, 675 (1991).

    Article  ADS  Google Scholar 

  29. J. A. Miller, P. J. Cargill, A. G. Emslie, et al., J. Geophys. Res. 102, 14631 (1997).

    ADS  Google Scholar 

  30. R. Schlickeiser and J. Steinacker, Sol. Phys. 122, 29 (1989).

    Article  ADS  Google Scholar 

  31. R. Vainio and R. Schlickeiser, Astron. Astrophys. 331, 793 (1998).

    ADS  Google Scholar 

  32. R. Vainio and R. Schlickeiser, Astron. Astrophys. 343, 303 (1999).

    ADS  Google Scholar 

  33. A. Kruger, Introduction to Solar Radio Astronomy and Radio Physics (Reidel, Dordrecht, 1979; Mir, Moscow, 1984).

    Google Scholar 

  34. S. Tsuneta, Astrophys. J. 456, 840 (1996).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 77, No. 12, 2000, pp. 944–952.

Original Russian Text Copyright © 2000 by Stovpyuk, Ostryakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stovpyuk, M.F., Ostryakov, V.M. Effect of coulomb losses on the spectra of heavy particles accelerated in prolonged solar events. Astron. Rep. 44, 833–840 (2000). https://doi.org/10.1134/1.1327642

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1327642

Keywords

Navigation