Skip to main content
Log in

Non-LTE effects in Na I spectral lines in stellar atmospheres

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The paper examines the statistical equilibrium of Na I in stellar atmospheres with a wide range of parameters: T eff=4000−12500 K, logg=0.0−4.5, and heavy element content [A] from 0.5 to −4.0. The effect of the “overrecombination” of Na I (i.e., excess relative to the equilibrium number density of Na I) is present over the entire range of parameters considered, and increases with T eff and luminosity. Na I lines are stronger than in the LTE case, so that non-LTE corrections to the sodium abundance, ΔNLTE, are negative. Eight Na I lines commonly employed in abundance analyses are used to construct the dependences of the non-LTE corrections on T eff, logg, and metallicity. The non-LTE corrections are small only for the Na I λλ615.4, 616.0 nm lines in main-sequence stars: |ΔNLTE| ≤0.08 dex. In all other cases, ΔNLTE depends strongly on T eff and logg, and a non-LTE treatment must be applied if the sodium abundance is to be determined with an accuracy no worse than 0.1 dex. The profiles of solar Na I lines are analyzed in order to empirically refine two types of atomic parameters required for the subsequent analysis of the stellar spectra. In the solar atmosphere, inelastic collisions with hydrogen atoms influence the statistical equilibrium of Na I only weakly, and the classical Unsold formula underestimates the van der Waals constant C 6. The empirical correction ΔlogC 6 is from 0.6 to 2 for various Na I lines. The sodium abundance in the solar atmosphere is determined based on line-profile analyses, yielding different results depending on whether the model atmospheres of Kurucz (logɛNa=6.20±0.02) or Holweger and Muller (logɛNa=6.28±0.03) are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Denisenkov, Astrofizika 31, 588 (1989).

    Google Scholar 

  2. N. Prantzos, A. Coc, and J. P. Thibaud, Astrophys. J. 379, 729 (1991).

    Article  ADS  Google Scholar 

  3. Y. Takeda and M. Takada-Hidai, Publ. Astron. Soc. Jpn. 46, 395 (TT-H) (1994).

    ADS  Google Scholar 

  4. J. H. Bruls, R. J. Rutten, and N. Shchukina, Astron. Astrophys. 265, 237 (1992).

    ADS  Google Scholar 

  5. L. I. Mashonkina, N. A. Sakhibullin, and V. V. Shimanskii, Astron. Zh. 70, 372 (1993) [Astron. Rep. 37, 192 (1993)].

    ADS  Google Scholar 

  6. Y. Takeda, Publ. Astron. Soc. Jpn. 47, 463 (1995).

    ADS  Google Scholar 

  7. A. A. Boyarchuk, I. Hubeny, J. Kubät, et al., Astrofizika 28, 202 (1988).

    Google Scholar 

  8. J. Drake, Mon. Not. R. Astron. Soc. 251, 369 (1991).

    ADS  Google Scholar 

  9. D. Baumuller, K. Butler, and T. Gehren, Astron. Astrophys. 338, 637 (1998).

    ADS  Google Scholar 

  10. R. L. Kurucz, CD-Roms 1994.

  11. D. G. Yakovlev, I. M. Band, M. B. Trzhaskovskaya, and D. A. Verner, Astron. Astrophys. 237, 267 (1990).

    ADS  Google Scholar 

  12. D. Hofsaess, At. Data Nucl. Data Tables 24, 285 (1979).

    Article  ADS  Google Scholar 

  13. W. L. Wiese, M. W. Smith, and B. M. Miles, Atomic Transition Probabilities, Vol. II, NSRDS-NBS 22, 1969.

  14. E. Biemont, Astron. Astrophys., Suppl. Ser. 31, 285 (1978).

    ADS  Google Scholar 

  15. D. Norcross, J. Phys. B. Molecul. Phys. 4, 1458 (1971).

    ADS  Google Scholar 

  16. N. A. Sakhibullin, Tr. Kazan. Gor. Astron. Obs. 48, 9 (1983).

    ADS  Google Scholar 

  17. L. H. Auer and J. Heasley, Astrophys. J. 205, 165 (1976).

    Article  ADS  Google Scholar 

  18. Th. Gehren, Astron. Astrophys. 237, 267 (1975).

    Google Scholar 

  19. G. W. Curtis and J. T. Jefferies, Astrophys. J. 150, 1061 (1967).

    Article  ADS  Google Scholar 

  20. A. McWilliam, G. W. Preston, Ch. Sneden, and L. Searle, Astron. J. 109, 2757 (1995).

    ADS  Google Scholar 

  21. R. L. Kurucz, Astrophys. J., Suppl. Ser. 40, 1 (1979).

    Article  ADS  Google Scholar 

  22. W. Steenbock and H. Holweger, Astron. Astrophys. 130, 319 (1984).

    ADS  Google Scholar 

  23. R. L. Kurucz, I. Furenlid, J. Brault, and L. Testerman, Solar Flux Atlas from 296 to 1300 nm (Natl. Solar Obs., Sunspot, 1984).

    Google Scholar 

  24. H. Holweger and E. Muller, Sol. Phys. 39, 19 (1974).

    Article  ADS  Google Scholar 

  25. P. Maltby, E. H. Avrett, M. Carlsson, et al., Astrophys. J. 306, 284 (1986).

    Article  ADS  Google Scholar 

  26. G. Deridder and W. van Rensbergen, Astron. Astrophys., Suppl. Ser. 23, 147 (1976).

    ADS  Google Scholar 

  27. W. Fullerton and Ch. R. Cowley, Astrophys. J. 165, 643 (1971).

    Article  ADS  Google Scholar 

  28. A. Unsold, in Physik der Sternatmospheren (Springer, Berlin, 1955, 2nd ed.).

    Google Scholar 

  29. N. Grevesse, A. Noels, and A. J. Sauval, Astron. Soc. Pac. Conf. Ser. 99, 117 (1996).

    ADS  Google Scholar 

  30. D. L. Lambert and B. Warner, Mon. Not. R. Astron. Soc. 138, 181 (1968).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 77, No. 12, 2000, pp. 893–908.

Original Russian Text Copyright © 2000 by Mashonkina, Shimanski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Sakhibullin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mashonkina, L.I., Shimanskii, V.V. & Sakhibullin, N.A. Non-LTE effects in Na I spectral lines in stellar atmospheres. Astron. Rep. 44, 790–803 (2000). https://doi.org/10.1134/1.1327637

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1327637

Keywords

Navigation