Skip to main content
Log in

Physical effect in Ranque vortex tubes

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

It is established that application of the model of a continuous medium with distributed internal angular momenta (angular-momentum medium) to the description of real flows in Ranque vortex tubes allows the revelation of a physical effect that is responsible for the experimentally observed separation of temperatures and for some other flow properties. Simplified relations describing changes in the total enthalpy are deduced in the approximations of equilibrium and nonequilibrium thermodynamics. The inhomogeneity of temperature is explained by the properties of a complex (three-parameter) thermodynamic system; its increase is caused by the strengthening of the angular momentum field M under the action of angular velocity Ω in the vortex tube, while its decrease is due to the destruction of this field because of a rapid decrease in vorticity in the near-axial region of the tube. Both these processes provide additional entropy production 2γt(Ω−λ−2 M)2/T, where γ t is the coefficient of rotatory viscosity of the angular-momentum medium. The same mechanism is operative in incom-pressible flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Ranque, J. Phys. Radium 4, 112 (1933).

    Google Scholar 

  2. A. F. Gutsol, Usp. Fiz. Nauk 167, 665 (1997) [Phys. Usp. 40, 639 (1997)].

    Google Scholar 

  3. V. A. Arbuzov, Yu. N. Dubnishchev, A. V. Lebedev, et al., Pis’ma Zh. Tekh. Fiz. 23(23), 84 (1997) [Tech. Phys. Lett. 23, 938 (1997)].

    Google Scholar 

  4. G. V. Skornyakov, Pis’ma Zh. Tekh. Fiz. 21(23), 1 (1995) [Tech. Phys. Lett. 21, 949 (1995)].

    Google Scholar 

  5. G. V. Skornyakov, Zh. Tekh. Fiz. 66(1), 3 (1996) [Tech. Phys. 41, 1 (1996)].

    Google Scholar 

  6. Y. A. Berezin and V. M. Trofimov, Continuum Mech. Thermodyn. 7, 415 (1995); Izv. Akad. Nauk, Mekh. Zhidk. Gaza 1, 47 (1996).

    ADS  MathSciNet  Google Scholar 

  7. Yu. V. Nemirovskii and Ya. L. Heinloo, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk 3(13), 74 (1978).

    Google Scholar 

  8. V. S. Sorokin, Zh. Éksp. Teor. Fiz. 13(7–8), 306 (1943).

    MathSciNet  Google Scholar 

  9. V. V. Sychev, Complex Thermodynamic Systems (Nauka, Moscow, 1970), p. 232.

    Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Statistical Physics (Akad. Nauk SSSR, Moscow, 1964; Pergamon, Oxford, 1980).

    Google Scholar 

  11. M. I. Shliomis, Zh. Éksp. Teor. Fiz. 51, 258 (1966) [Sov. Phys. JETP 24, 173 (1966)].

    MATH  Google Scholar 

  12. S. R. de Groot and P. Mazur, Nonequilibrium Thermodynamics (North-Holland, Amsterdam, 1962; Mir, Moscow, 1964).

    Google Scholar 

  13. V. E. Fin’ko, Zh. Tekh. Fiz. 53, 1770 (1983) [Sov. Phys. Tech. Phys. 28, 1089 (1983)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 72, No. 5, 2000, pp. 366–370.

Original Russian Text Copyright © 2000 by Trofimov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trofimov, V.M. Physical effect in Ranque vortex tubes. Jetp Lett. 72, 249–252 (2000). https://doi.org/10.1134/1.1324021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1324021

PACS numbers

Navigation