Skip to main content
Log in

Does the “quantized nesting model” properly describe the magnetic-field-induced spin-density-wave transitions?

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

Theoretical reinvestigation of a so-called field-induced spin-density-wave (FISDW) phase diagram in a magnetic field in quasi-one-dimensional compounds (TMTSF)2X (X=PF6, ClO4, AsF6, etc.) has revealed some novel qualitative features. Among them are (1) the FISDW wave vector is never strictly quantized; and (2) the FISDW phase diagram consists of two regions: (a) “Quantum FISDW,” where there exist jumps of the FISDW wave vectors between different FISDW subphases and (b) “Quasiclassical FISDW,” where the jumps disappear above some critical points and only one FISDW phase (characterized by a wave vector oscillating with a magnetic field) exists. Both these features are due to taking account of the breaking of an electron-hole symmetry. They contradict the previous textbook theoretical results (including the calculations of the “Three Dimensional Quantum Hall Effect”) performed by means of the “Quantized Nesting Model” which explicitly assumes the existence of the electron-hole symmetry. We stress that some effects related to the phenomena described above were experimentally observed but not properly interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Chaikin, Mu-Yong Choi, J. F. Kwak, et al., Phys. Rev. Lett. 51, 2333 (1983).

    Article  ADS  Google Scholar 

  2. M. Ribault, D. Jerome, D. Tuchender, et al., J. Phys. Lett. 44, L953 (1983).

    Google Scholar 

  3. T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors (Springer-Verlag, Heidelberg, 1998, 2nd ed.).

    Google Scholar 

  4. P. Lederer, J. Phys. I 6, 1899 (1996); V. M. Yakovenko and H.-S. Goan, J. Phys. I 6, 1917 (1996).

    Article  Google Scholar 

  5. L. P. Gor’kov, Sov. Phys. Usp. 27, 809 (1984).

    Google Scholar 

  6. D. Jerome and H. J. Schultz, Adv. Phys. 31, 299 (1982).

    ADS  Google Scholar 

  7. S. T. Hannahs, J. S. Brooks, W. Kang, et al., Phys. Rev. Lett. 63, 1988 (1989).

    Article  ADS  Google Scholar 

  8. J. R. Cooper, W. Kang, P. Auban, et al., Phys. Rev. Lett. 63, 1984 (1989).

    Article  ADS  Google Scholar 

  9. L. P. Gor’kov and A. G. Lebed, J. Phys. Lett. 45, L433 (1984).

    Google Scholar 

  10. P. M. Chaikin, Phys. Rev. B 31, 4770 (1985).

    Article  ADS  Google Scholar 

  11. M. Heritier, G. Montambaux, and P. Lederer, J. Phys. Lett. 45, L943 (1984).

    Google Scholar 

  12. A. G. Lebed, Zh. Éksp. Teor. Fiz. 89, 1034 (1985) [Sov. Phys. JETP 62, 595 (1985)].

    ADS  Google Scholar 

  13. K. Yamaji, Synth. Met. 13, 29 (1986).

    Google Scholar 

  14. K. Maki, Phys. Rev. B 33, 4826 (1986).

    ADS  Google Scholar 

  15. N. Dupuis and V. M. Yakovenko, Phys. Rev. Lett. 80, 3618 (1998).

    Article  ADS  Google Scholar 

  16. D. Zanchi and G. Montambaux, Phys. Rev. Lett. 77, 366 (1996).

    Article  ADS  Google Scholar 

  17. D. Poilblanc, G. Montambaux, M. Heritier, et al., Phys. Rev. Lett. 58, 270 (1987).

    Article  ADS  Google Scholar 

  18. G. Montambaux, M. Heritier, and P. Lederer, Phys. Rev. Lett. 55, 2078 (1985).

    Article  ADS  Google Scholar 

  19. L. P. Gor’kov and A. G. Lebed, Phys. Rev. B 51, 3285 (1995).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 72, No. 3, 2000, pp. 205–209.

Original English Text Copyright © 2000 by Lebed.

This article was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebed, A.G. Does the “quantized nesting model” properly describe the magnetic-field-induced spin-density-wave transitions?. Jetp Lett. 72, 141–143 (2000). https://doi.org/10.1134/1.1316818

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1316818

PACS numbers

Navigation