Skip to main content
Log in

Scaling law for a low-pressure gas breakdown in a homogeneous DC electric field

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2000

Abstract

Gas breakdown in nitrogen, air, and oxygen in a dc electric field at various interelectrode distances L is studied experimentally. A scaling law for a low-pressure gas breakdown U dc =f(pL, L/R) is deduced. According to this scaling law, the breakdown voltage U dc is a function not only of the product of the gas pressure p and the gap length L, but also of the ratio of the gap length L to the chamber radius R. It is shown that, for any dimensions of the cylindrical discharge chamber (in the range of L/R under investigation), the ratio of the breakdown electric field to the gas pressure p at the minimum of the ignition curve remains constant: (E dc /p)min≈const. A method for calculating the ignition curve in a cylindrical discharge chamber with arbitrary values of L and R is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Paschen, Ann. Phys. Chem., Ser. 3 37, 69 (1889).

    Google Scholar 

  2. M. J. Druyvesteyn and F. M. Penning, Rev. Mod. Phys. 12, 87 (1940).

    Article  ADS  Google Scholar 

  3. J. M. Meek and J. D. Craggs, Electrical Breakdown of Gases (Clarendon, Oxford, 1953; Inostrannaya Literatura, Moscow, 1960).

    Google Scholar 

  4. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987).

    Google Scholar 

  5. V.A. Lisovsky and V. D. Yegorenkov, J. Phys. D 27, 2340 (1994).

    Article  ADS  Google Scholar 

  6. A. V. Phelps and Z. Lj. Petrovic, Plasma Sources Sci. Technol. 8, R21 (1999).

    ADS  Google Scholar 

  7. M. Sato, Bull. Yamagata Univ. 25, 119 (1999).

    Google Scholar 

  8. J. S. Townsend and S. P. McCallum, Philos. Mag. 6, 857 (1928).

    Google Scholar 

  9. H. Fricke, Z. Phys. 86, 464 (1933).

    ADS  Google Scholar 

  10. S. P. McCallum and L. Klatzow, Philos. Mag. 17, 279 (1934).

    Google Scholar 

  11. H. C. Miller, Physica (Amsterdam) 30, 2059 (1964).

    Article  ADS  Google Scholar 

  12. L. Jacques, W. Bruynooghe, R. Boucique, and W. Wieme, J. Phys. D 19, 1731 (1986).

    Article  ADS  Google Scholar 

  13. M. Yumoto, T. Sakai, Y. Ebinuma, et al., in Proceedings of the 8th International Symposium on High-Voltage Engineering, Yokohama, 1993, p. 409.

  14. G. Auday, P. Guillot, J. Galy, and H. Brunet, J. Appl. Phys. 83, 5917 (1998).

    Article  ADS  Google Scholar 

  15. M. J. Schonhuber, IEEE Trans. Power Appar. Syst. 88, 100 (1969).

    Google Scholar 

  16. T. W. Dakin, J. Gerhold, Z. Krasucki, et al., in Proceedings of the International Conference on Large High-Voltage Electric Systems, Paris, 1977, p. 1.

  17. B. Held, N. Soulem, R. Peyrous, and N. Spyrou, Trans. Inst. Electr. Eng. Jpn., Part A 116, 925 (1996).

    Google Scholar 

  18. B. Held, N. Soulem, R. Peyrous, and N. Spyrou, J. Phys. III 7, 2059 (1997).

    Google Scholar 

  19. J. A. Pim, Proc. Inst. Electr. Eng., Part 3 96, 117 (1949).

    Google Scholar 

  20. S. C. Brown, in Basic Data of Plasma Physics (Wiley, New York, 1959), p. 240.

    Google Scholar 

  21. H. Ritz, Arch. Elektrotech. (Berlin) 26, 219 (1937).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 72, No. 2, 2000, pp. 49–53.

Original Russian Text Copyright © 2000 by Lisovsky, Yakovin.

An erratum to this article is available at http://dx.doi.org/10.1134/1.1334705.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisovsky, V.A., Yakovin, S.D. Scaling law for a low-pressure gas breakdown in a homogeneous DC electric field. Jetp Lett. 72, 34–37 (2000). https://doi.org/10.1134/1.1312005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1312005

PACS numbers

Navigation