Skip to main content
Log in

Evolution of the band structure of quasiparticles with doping in copper oxides on the basis of a generalized tight-binding method

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Two methods for stabilizing the two-hole 3 B 1g state as the ground state instead of the Zhang-Rice singlet are determined on the basis of an orthogonal cellular basis for a realistic multiband pd model of a CuO2 layer and the dispersion relations for the valence band top in undoped and doped cases are calculated. In the undoped case, aside from the valence band, qualitatively corresponding to the experimental ARPES data for Sr2CuO2Cl2 and the results obtained on the basis of the t-t′-J model, the calculations give a zero-dispersion virtual level at the valence band top itself. Because of the zero amplitude of transitions forming the virtual level the response corresponding to it is absent in the spectral density function. In consequence, the experimental ARPES data do not reproduce its presence in this antiferromagnetic undoped dielectric. A calculation of the doped case showed that the virtual level transforms into an impurity-type band and acquires dispersion on account of the nonzero occupation number of the two-hole states and therefore should be detected in ARPES experiments as a high-energy peak in the spectral density. The computed dispersion dependence for the valence band top is identical to the dispersion obtained by the Monte Carlo method, and the ARPES data for optimally doped Bi2Sr2CaCu2O8+δ samples. The data obtained also make it possible to explain the presence of an energy pseudogap at the symmetric X point of the Brillouin band of HTSC compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, Science 235, 196 (1987); R. O. Zaitsev and V. A. Ivanov, Fiz. Tverd. Tela (Leningrad) 29, 2554 (1987) [Sov. Phys. Solid State 29, 1475 (1987)].

    Google Scholar 

  2. P. Kuiper, G. Kruizinga, J. Chijsen, et al., Phys. Rev. B 38, 6483 (1988).

    Article  ADS  Google Scholar 

  3. N. Nucker, J. Fink, J. C. Fugle, et al., Phys. Rev. Lett. 58, 2794 (1987).

    Google Scholar 

  4. V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).

    Article  ADS  Google Scholar 

  5. C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid State Commun. 62, 681 (1987).

    Article  Google Scholar 

  6. Yu. B. Gaididei and V. M. Loktev, Phys. Status Solidi B 147, 307 (1988).

    Google Scholar 

  7. F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

    ADS  Google Scholar 

  8. H. Eskes and J. H. Jefferson, Phys. Rev. B 48, 9788 (1993).

    Article  ADS  Google Scholar 

  9. H. Eskes and G. A. Sawatzky, Phys. Rev. Lett. 61, 1415 (1988).

    Article  ADS  Google Scholar 

  10. E. B. Stechel and D. R. Jennison, Phys. Rev. B 38, 4632 (1988).

    ADS  Google Scholar 

  11. H. Eskes, G. A. Savatzky, and L. F. Feiner, Physica C (Amsterdam) 160, 424 (1989).

    ADS  Google Scholar 

  12. J. H. Jefferson, H. Eskes, and L. F. Feiner, Phys. Rev. B 45, 7959 (1992).

    Article  ADS  Google Scholar 

  13. S. V. Lovtsov and V.Yu. Yushankhai, Physica C (Amsterdam) 179, 159 (1991).

    ADS  Google Scholar 

  14. H.-B. Schutler and A. J. Fedro, Phys. Rev. B 45, 7588 (1992).

    ADS  Google Scholar 

  15. S. G. Ovchinnikov and I. S. Sandalov, Physica C (Amsterdam) 198, 607 (1989).

    ADS  Google Scholar 

  16. J. H. Jefferson, Physica B (Amsterdam) 165–166, 1013 (1990).

    Google Scholar 

  17. V. I. Belinicher, A. L. Chernyshev, and V. A. Shubin, Phys. Rev. B 53, 335 (1996).

    Article  ADS  Google Scholar 

  18. A. Nazarenko, K. J. E. Vos, S. Haas, et al., Phys. Rev. B 51, 8676 (1995).

    Article  ADS  Google Scholar 

  19. D. Daffy, A. Nazarenko, S. Haas, et al., Phys. Rev. B 56, 5597 (1997).

    ADS  Google Scholar 

  20. B. O. Wells, Z.-X. Shen, A. Matsuura, et al., Phys. Rev. Lett. 74, 964 (1995).

    Article  ADS  Google Scholar 

  21. A. Bianconi et al., Physica C (Amsterdam) 162–164, 209 (1989).

    Google Scholar 

  22. H. Romberg et al., Phys. Rev. B 41, 2609 (1990).

    Article  ADS  Google Scholar 

  23. L. F. Feiner, J. H. Jefferson, and R. Raimondi, Phys. Rev. B 53, 8751 (1996).

    Article  ADS  Google Scholar 

  24. R. Raimondi, J. H. Jeferson, and L. F. Feiner, Phys. Rev. B 53, 8774 (1996).

    Article  ADS  Google Scholar 

  25. S. G. Ovchinnikov, Phys. Rev. B 49, 9891 (1994).

    Article  ADS  Google Scholar 

  26. C. G. Ovchinnikov, Zh. Éksp. Teor. Fiz. 107, 796 (1995) [JETP 80, 451 (1995)].

    Google Scholar 

  27. S. G. Ovchinnikov, Zh. Éksp. Teor. Fiz. 102, 534 (1992) [Sov. Phys. JETP 75, 283 (1992)].

    Google Scholar 

  28. S. G. Ovchinnikov, Pis’ma Zh. Éksp. Teor. Fiz. 64, 23 (1996) [JETP Lett. 64, 25 (1996)].

    Google Scholar 

  29. B. S. Shastry, Phys. Rev. Lett. 63, 1288 (1989).

    Article  ADS  Google Scholar 

  30. R. O. Zaitsev, Zh. Éksp. Teor. Fiz. 68(1), 207 (1975) [Sov. Phys. JETP 41, 100 (1975)].

    Google Scholar 

  31. V. A. Gavrichkov, M. Sh. Erukhimov, S. G. Ovchinnikov, and I. S. Édel’man, Zh. Éksp. Teor. Fiz. 90, 1275 (1986) [Sov. Phys. JETP 63, 744 (1986)].

    Google Scholar 

  32. Z. Liu and E. Manousakis, Phys. Rev. B 45, 2425 (1992).

    ADS  Google Scholar 

  33. O. K. Andersen, A. Liechtenstein, O. Jepsen, and F. Paulsen, J. Phys. Chem. Solids 56, 1573 (1995).

    Google Scholar 

  34. G. Martinez and P. Horsch, Phys. Rev. B 44, 317 (1991).

    Article  ADS  Google Scholar 

  35. E. Daggotto, F. Ortolani, and D. Scalapino, Phys. Rev. B 46, 3183 (1992).

    ADS  Google Scholar 

  36. G. Khaliullin and P. Horsch, Phys. Rev. B 47, 463 (1993).

    Article  ADS  Google Scholar 

  37. G. G. Khaliullin, Pis’ma Zh. Éksp. Teor. Fiz. 52, 999 (1990) [JETP Lett. 52, 389 (1990)].

    Google Scholar 

  38. J. L. Richard and V. Yu. Yushankhai, Phys. Rev. B 50, 12927 (1994).

    Google Scholar 

  39. S. G. Ovchinnikov, Usp. Fiz. Nauk 167, 1043 (1997) [Phys. Usp. 40, 993 (1997)].

    Google Scholar 

  40. M. Guptasarma, D. G. Hinks, and M. V. Klein, Phys. Rev. Lett. 82, 5349 (1999).

    ADS  Google Scholar 

  41. D. S. Marshall et al., Phys. Rev. Lett. 76, 4841 (1996).

    Article  ADS  Google Scholar 

  42. P. Prelovsek, J. Jaklic, and K. Bedell, Phys. Rev. B 60, 40 (1999).

    ADS  Google Scholar 

  43. A. P. Kampf and J. R. Schrieffer, Phys. Rev. B 41, 6399 (1990).

    Article  ADS  Google Scholar 

  44. J. Schmalian, D. Pains, and B. Stoykovich, Phys. Rev. B 60, 667 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 118, No. 2, 2000, pp. 422–437.

Original Russian Text Copyright © 2000 by Gavrichkov, Ovchinnikov, Borisov, Goryachev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrichkov, V.A., Ovchinnikov, S.G., Borisov, A.A. et al. Evolution of the band structure of quasiparticles with doping in copper oxides on the basis of a generalized tight-binding method. J. Exp. Theor. Phys. 91, 369–383 (2000). https://doi.org/10.1134/1.1311997

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1311997

Keywords

Navigation