Skip to main content
Log in

Improved phenomenological renormalization schemes

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An analysis is made of various methods of phenomenological renormalization based on finite-dimensional scaling equations for inverse correlation lengths, the singular part of the free energy density, and their derivatives. The analysis is made using two-dimensional Ising and Potts lattices and the three-dimensional Ising model. Variants of equations for the phenomenological renormalization group are obtained which ensure more rapid convergence than the conventionally used Nightingale phenomenological renormalization scheme. An estimate is obtained for the critical finite-dimensional scaling amplitude of the internal energy in the three-dimensional Ising model. It is shown that the two-dimensional Ising and Potts models contain no finite-dimensional corrections to the internal energy so that the positions of the critical points for these models can be determined exactly from solutions for strips of finite width. It is also found that for the two-dimensional Ising model the scaling finite-dimensional equation for the derivative of the inverse correlation length with respect to temperature gives the exact value of the thermal critical index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, Mass., 1976; Mir, Moscow, 1980).

    Google Scholar 

  2. M. P. Nightingale, Physica A (Amsterdam) 83, 561 (1976).

    ADS  Google Scholar 

  3. M. P. Nightingale, Proc. K. Ned. Akad. Wet., Ser. B: Paleontol., Geol., Phys., Chem., Anthropol. 82, 235 (1979).

    MathSciNet  Google Scholar 

  4. P. Nightingale, J. Appl. Phys. 53, 7927 (1982).

    ADS  Google Scholar 

  5. M. P. Nightingale, in Finite Size Scaling and Numerical Simulation of Statistical Systems, Ed. by V. Privman (World Scientific, Singapore, 1990), p. 287.

    Google Scholar 

  6. R. R. dos Santos and L. Sneddon, Phys. Rev. B 23, 3541 (1981).

    ADS  MathSciNet  Google Scholar 

  7. K. Binder, Phys. Rev. Lett. 47, 693 (1981).

    Article  ADS  Google Scholar 

  8. K. Binder, Z. Phys. B 43, 119 (1981).

    Article  Google Scholar 

  9. M. Itakura, cond-mat/9611174.

  10. M. Fisher, in International School of “Enrico Fermi” on Critical Phenomena, 1970, Ed. by M. S. Green (Academic, New York, 1971); F. J. Dyson, E. W. Montroll, M. Kac, and M. Fisher, Stability and Phase Transition (Mir, Moscow, 1973), p. 245.

    Google Scholar 

  11. M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516 (1972).

    Article  ADS  Google Scholar 

  12. M. N. Barber, in Phase Transitions and Critical Phenomena, Ed. by C. Domb and J. L. Lebowitz (Academic, London, 1983), Vol. 8, p. 145.

    Google Scholar 

  13. V. Privman, in Finite Size Scaling and Numerical Simulation of Statistical Systems, Ed. by V. Privman (World Scientific, Singapore, 1990), p. 1.

    Google Scholar 

  14. W. Kinzel and M. Schick, Phys. Rev. B 23, 3435 (1981).

    ADS  Google Scholar 

  15. M. A. Yurishchev, hep-lat/9908019; submitted to Nucl. Phys. B (Proc. Suppl.) (2000).

  16. M. A. Yurishchev, Phys. Rev. B 50, 13533 (1994).

    Google Scholar 

  17. M. A. Yurishchev, Phys. Rev. E 55, 3915 (1997).

    Article  ADS  Google Scholar 

  18. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, New York, 1982; Mir, Moscow, 1985).

    Google Scholar 

  19. F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).

    Article  ADS  Google Scholar 

  20. L. Onsager, Phys. Rev. 65, 117 (1944).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. H. Saleur and B. Derrida, J. Phys. (Paris) 46, 1043 (1985).

    MathSciNet  Google Scholar 

  22. B. Kaufman, Phys. Rev. 76, 1232 (1949).

    ADS  MATH  Google Scholar 

  23. K. Huang, Statistical Mechanics (Wiley, New York, 1963; Mir, Moscow, 1966).

    Google Scholar 

  24. R. B. Potts, Proc. Cambridge Philos. Soc. 48, 106 (1952).

    MATH  MathSciNet  Google Scholar 

  25. R. J. Baxter, J. Phys. A 6, L445 (1973).

    ADS  Google Scholar 

  26. R. J. Baxter, Proc. R. Soc. London, Ser. A 383, 43 (1982).

    ADS  MathSciNet  Google Scholar 

  27. J. Wosiek, Phys. Rev. B 49, 15023 (1994).

    Google Scholar 

  28. Z. Burda and J. Wosiek, Nucl. Phys. B (Proc. Suppl.) 34, 677 (1994).

    Article  ADS  Google Scholar 

  29. A. Pelizzola, Phys. Rev. B 51, 12005 (1995).

    Google Scholar 

  30. V. Privman and M. E. Fisher, Phys. Rev. B 30, 322 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  31. H. W. J. Blöte, L. N. Shchur, and A. L. Talapov, Int. J. Mod. Phys. C 10, 437 (1999).

    Google Scholar 

  32. K. K. Mon, Phys. Rev. B 39, 467 (1989).

    ADS  Google Scholar 

  33. M. Hasenbusch and K. Pinn, Nucl. Phys. B (Proc. Suppl.) 63, 619 (1998).

    Article  ADS  Google Scholar 

  34. M. Hasenbusch and K. Pinn, J. Phys. A 31, 6157 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 118, No. 2, 2000, pp. 380–387.

Original Russian Text Copyright © 2000 by Yurishchev.

This work was partly carried out at the Landau Institute of Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurishchev, M.A. Improved phenomenological renormalization schemes. J. Exp. Theor. Phys. 91, 332–337 (2000). https://doi.org/10.1134/1.1311992

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1311992

Keywords

Navigation