Skip to main content

Similarity effects in multiple scattering of coherent radiation: Phenomenology and experiments


Based on phenomenological concepts of statistics of effective optical paths for multiple scattering of coherent radiation, an analysis is carried out of similarity effects observed for the dependences of statistical moments of the scattered field on the relaxation parameters with a dimension of reciprocal length. Within the framework of the diffusion approximation, expressions are obtained that describe the autocorrelation function of fluctuations of the scattered-field amplitude, the degree of polarization, and the normalized intensity of scattered light for media with a finite absorption length in the case of forward scattering of coherent radiation in a plane layer of an isotropic scattering medium. The results of the analysis show the similarity of the dependences of these quantities on the corresponding spatial scales. Experiments with model scattering media (aqueous suspensions of polystyrene spherical particles) supported the existence of similarity effects in multiple scattering. An experimental study was made of the relation between the characteristic depolarization length and the transport length for multiple scattering of coherent radiation in a plane layer. The effective value of the radiation diffusion coefficient providing the best agreement between the experimental and the calculated values of parameters of the scattered field is shown to be independent of the absorption coefficient of a medium.

This is a preview of subscription content, access via your institution.


  1. 1.

    P. W. Anderson, E. Abrahams, and T. V. Ramakrishnan, Phys. Rev. Lett. 43, 718 (1979).

    Article  ADS  Google Scholar 

  2. 2.

    P. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  3. 3.

    A. G. Yodh and B. Chance, Phys. Today 48, 34 (1995).

    Article  Google Scholar 

  4. 4.

    X. D. Li, T. Durduran, B. Chance, and A. G. Yodh, Opt. Lett. 22, 573 (1997).

    ADS  Google Scholar 

  5. 5.

    F. C. MacKintosh and S. John, Phys. Rev. B 40, 2383 (1989).

    Article  ADS  Google Scholar 

  6. 6.

    D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, J. Phys. (Paris) 51, 2101 (1990).

    Google Scholar 

  7. 7.

    A. Ishimaru, in Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978; Mir, Moscow, 1981), Vols. 1 and 2.

    Google Scholar 

  8. 8.

    I. Freund, M. Kaveh, R. Berkovits, and M. Rosenbluh, Phys. Rev. B 42, 2613 (1990).

    Article  ADS  Google Scholar 

  9. 9.

    I. Tarhan and G. H. Watson, Phys. Rev. A 45, 6013 (1992).

    Article  ADS  Google Scholar 

  10. 10.

    P. E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696 (1985).

    Article  ADS  Google Scholar 

  11. 11.

    M. P. van Albada and A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985).

    Article  ADS  Google Scholar 

  12. 12.

    E. Akkermans, P. E. Wolf, and R. Maynard, Phys. Rev. Lett. 56, 1471 (1986).

    Article  ADS  Google Scholar 

  13. 13.

    G. Maret and P. E. Wolf, Physica B (Amsterdam) 65, 409 (1987).

    Google Scholar 

  14. 14.

    F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. B 40, 9342 (1989).

    Article  ADS  Google Scholar 

  15. 15.

    D. Bicout and C. Brosseau, J. Phys. I 2, 2047 (1992).

    Article  Google Scholar 

  16. 16.

    D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, Phys. Rev. Lett. 60, 1134 (1988).

    Article  ADS  Google Scholar 

  17. 17.

    S. R. Arridge, M. Cope, and D. T. Delpy, Phys. Med. Biol. 37, 1531 (1992).

    Article  Google Scholar 

  18. 18.

    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  19. 19.

    D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).

    Article  ADS  Google Scholar 

  20. 20.

    D. A. Zimnyakov and V. V. Tuchin, Pis’ma Zh. Éksp. Teor. Fiz. 67, 455 (1998) [JETP Lett. 67, 476 (1998)].

    ADS  Google Scholar 

  21. 21.

    K. Furutsu and Y. Yamada, Phys. Rev. E 50, 3634 (1994).

    Article  ADS  Google Scholar 

  22. 22.

    K. Furutsu, J. Opt. Soc. Am. A 14, 267 (1997).

    ADS  Google Scholar 

  23. 23.

    T. Durduran, A. G. Yodh, B. Chance, and D. A. Boas, J. Opt. Soc. Am. A 14, 3358 (1997).

    ADS  Article  Google Scholar 

  24. 24.

    M. Bassani, F. Martelli, G. Zaccanti, and D. Contini, Opt. Lett. 22, 853 (1997).

    ADS  Google Scholar 

  25. 25.

    D. J. Durian, Opt. Lett. 23, 1502 (1998).

    ADS  Google Scholar 

  26. 26.

    R. Aronson, J. Opt. Soc. Am. A 12, 2532 (1995).

    ADS  Article  Google Scholar 

  27. 27.

    D. A. Boas and A. G. Yodh, J. Opt. Soc. Am. A 14, 192 (1997).

    ADS  Google Scholar 

  28. 28.

    P. D. Kaplan, M. H. Kao, A. G. Yodh, and D. J. Pine, Appl. Opt. 32, 3828 (1993).

    ADS  Google Scholar 

  29. 29.

    A. G. Yodh, N. Georgiades, and D. J. Pine, Opt. Commun. 83, 56 (1991).

    Article  ADS  Google Scholar 

Download references

Author information



Additional information


Translated from Optika i Spektroskopiya, Vol. 89, No. 3, 2000, pp. 494–504.

Original Russian Text Copyright © 2000 by Zimnyakov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zimnyakov, D.A. Similarity effects in multiple scattering of coherent radiation: Phenomenology and experiments. Opt. Spectrosc. 89, 453–462 (2000).

Download citation


  • Multiple Scattering
  • Statistical Moment
  • Probe Beam
  • Scattered Radiation
  • Diffusion Approximation