Skip to main content
Log in

Decay of solitons in an isotropic collisionless quasineutral plasma with isothermal pressure

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Soliton-type solutions of the complete unreduced system of transport equations describing the plane-parallel motions of an isotropic collisionless quasineutral plasma in a magnetic field with constant ion and electron temperatures are studied. The regions of the physical parameters for fast and slow magnetosonic branches, where solitons and generalized solitary waves—nonlocal soliton structures in the form of a soliton “core” with asymptotic behavior at infinity in the form of a periodic low-amplitude wave—exist, are determined. In the range of parameters where solitons are replaced by generalized solitary waves, soliton-like disturbances are subjected to decay whose mechanisms are qualitatively different for slow and fast magnetosonic waves. A specific feature of the decay of such disturbances for fast magnetosonic waves is that the energy of the disturbance decreases primarily as a result of the quasistationary emission of a resonant periodic wave of the same nature. Similar disturbances in the form of a soliton core of a slow magnetosonic generalized solitary wave essentially do not emit resonant modes on the Alfvén branch but they lose energy quite rapidly because of continuous emission of a slow magnetosonic wave. Possible types of shocks which are formed by two types of existing soliton solutions (solitons and generalized solitary waves) are examined in the context of such solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Montgomery, Phys. Fluids 2, 585 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  2. P. G. Saffman, J. Fluid Mech. 11, 16 (1961).

    ADS  MATH  MathSciNet  Google Scholar 

  3. P. G. Saffman, J. Fluid Mech. 11, 552 (1961).

    ADS  MATH  MathSciNet  Google Scholar 

  4. R. Z. Sagdeev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1964; Consultants Bureau, New York, 1968), Vol. 4.

    Google Scholar 

  5. P. J. Kellogg, Phys. Fluids 7, 1555 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Kakutani, J. Phys. Soc. Jpn. 21, 385 (1966).

    Google Scholar 

  7. T. Kakutani, H. Ono, T. Taniuti, and C. Wei, J. Phys. Soc. Jpn. 24, 1159 (1968).

    Google Scholar 

  8. T. Kakutani and H. Ono, J. Phys. Soc. Jpn. 26, 1305 (1969).

    Google Scholar 

  9. A. Il’ichev, J. Plasma Phys. 55, 181 (1996).

    Google Scholar 

  10. A. T Il’ichev, Mat. Zametki 59, 719 (1996).

    MathSciNet  Google Scholar 

  11. A. T. Il’ichev, Izv. Akad. Nauk, Mekh. Zhidk. Gaza 3, 154 (1996).

    Google Scholar 

  12. T. Kakutani, T. Kawahara, and T. Taniuti, J. Phys. Soc. Jpn. 23, 1138 (1967).

    Google Scholar 

  13. T. Kawahara, J. Phys. Soc. Jpn. 27, 1331 (1969).

    MathSciNet  Google Scholar 

  14. V. L. Patel and B. Dasgupta, Physica D (Amsterdam) 27, 387 (1987).

    ADS  Google Scholar 

  15. A. V. Gurevich and L. P. Pitaevskii, Zh. Éksp. Teor. Fiz. 65, 590 (1973) [Sov. Phys. JETP 38, 291 (1973)].

    ADS  Google Scholar 

  16. I. B. Bakholdin, Prikl. Mat. Mekh. 63, 52 (1999).

    Google Scholar 

  17. I. B. Bakholdin, Izv. Akad. Nauk, Mekh. Zhidk. Gaza 4, 95 (1999).

    MATH  MathSciNet  Google Scholar 

  18. V. D. Shafranov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1967), Vol. 3.

    Google Scholar 

  19. A. T. Il’ichev, Izv. Akad. Nauk, Mekh. Zhidk. Gaza 2, 3 (2000).

    MathSciNet  Google Scholar 

  20. G. Iooss and M. Adelmeyer, Topics on Bifurcation Theory and Applications (World Scientific, Singapore, 1992).

    Google Scholar 

  21. I. Bakholdin and A. Il’ichev, in Contemporary Mathematics, Ed. by F. Dias and J.-M. Ghidaglia (Providence, Rhode Island, 1996), Vol. 200, p. 1.

  22. I. Bakholdin and A. Il’ichev, J. Plasma Phys. 60, 569 (1998).

    Article  ADS  Google Scholar 

  23. T. R. Akylas and R. H. J. Grimshaw, J. Fluid Mech. 242, 279 (1992).

    ADS  MathSciNet  Google Scholar 

  24. E. S. Benilov, R. Grimshaw, and E. P. Kuznetsova, Physica D (Amsterdam) 69, 270 (1993).

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 118, No. 1, 2000, pp. 125–141.

Original Russian Text Copyright © 2000 by Bakholdin, Zharkov, Il’ichev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakholdin, I.B., Zharkov, A.A. & Il’ichev, A.T. Decay of solitons in an isotropic collisionless quasineutral plasma with isothermal pressure. J. Exp. Theor. Phys. 91, 111–125 (2000). https://doi.org/10.1134/1.1307239

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1307239

Keywords

Navigation