Skip to main content
Log in

Acoustic activity effect for picosecond soliton-like pulses

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A theoretical analysis is made of the acoustic activity for interfering picosecond acoustic soliton-like pulses of down to a single oscillation period. An analysis is made of the case where these pulses propagate parallel to an external magnetic field and one of the acoustic axes in a cubic crystal containing paramagnetic impurities having effective spin S = 1. Allowance is made for natural, magnetic (Faraday), and cross acoustic activity. This cross activity is caused by the significant spatial nonlocality of the spin-phonon interaction for such short pulses in crystals having no center of inversion in the presence of paramagnetic impurities. A system of nonlinear equations is obtained for the transverse and longitudinal components of the strain in the form of a coupling between the “differentiated” nonlinear Schrödinger equation (with nonlinearity after the derivative sign) and the Korteweg-de Vries equation which generalizes the known systems of long-short-wavelength resonance to the case where the slowly varying envelope approximation is not valid. An approximate solution of this system is used to study the structure of an elastic soliton-like pulse whose transverse component has a rotating plane of polarization, which propagates under conditions of nonlinear coupling with the longitudinal strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Krasil’nikov and V. V. Krylov, Introduction to Physical Acoustics (Nauka, Moscow, 1984).

    Google Scholar 

  2. J. W. Tucker and V. W. Rampton, Microwave Ultrasonics in Solid State Physics (North-Holland, Amsterdam, 1972; Mir, Moscow, 1975).

    Google Scholar 

  3. J. T. Darrow, B. B. Hu, X. C. Chang, and D. H. Auston, Opt. Lett. 15, 323 (1990).

    ADS  Google Scholar 

  4. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, The Optics of Femtosecond Pulses (Nauka, Moscow, 1998).

    Google Scholar 

  5. S. A. Akhmanov and V. É. Gusev, Usp. Fiz. Nauk 162(3), 3 (1992) [Sov. Phys. Usp. 35, 153 (1992)].

    Google Scholar 

  6. A. V. Kim, M. Yu. Ryabikin, and A. M. Sergeev, Usp. Fiz. Nauk 169(1), 58 (1999).

    Google Scholar 

  7. S. L. McCall and E. L. Hahn, Phys. Rev. Lett. 18, 908 (1967).

    Article  ADS  Google Scholar 

  8. N. S. Shiren, Phys. Rev. B 2, 2471 (1970).

    Article  ADS  Google Scholar 

  9. G. A. Denisenko, Zh. Éksp. Teor. Fiz. 60, 2269 (1971) [Sov. Phys. JETP 33, 1220 (1971)].

    Google Scholar 

  10. V. A. Golenishchev-Kutuzov, V. V. Samartsev, N. K. Solovarov, and B. M. Khabibulin, Magnetic Quantum Acoustics (Nauka, Moscow, 1997).

    Google Scholar 

  11. S. V. Sazonov, Zh. Éksp. Teor. Fiz. 107, 20 (1995) [JETP 80, 10 (1995)].

    Google Scholar 

  12. S. V. Sazonov, J. Phys.: Condens. Matter 4, 6485 (1992).

    ADS  Google Scholar 

  13. S. V. Sazonov, J. Phys.: Condens. Matter 6, 6295 (1994).

    Article  ADS  Google Scholar 

  14. S. A. Altshuler and B. M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (Nauka, Moscow, 1972; Halsted, New York, 1975).

    Google Scholar 

  15. L. K. Zarembo and V. A. Krasil’nikov, Introduction to Nonlinear Physical Acoustics (Nauka, Moscow, 1966).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1987; Pergamon, New York, 1986).

    Google Scholar 

  17. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969; Mir, Moscow, 1972).

    Google Scholar 

  18. E. Taker, in Physical Acoustics: Principles and Methods, Vol. 4, Part A: Applications to Quantum and Solid State Physics, Ed. by W. P. Mason (Academic, New York, 1966; Mir, Moscow, 1969).

    Google Scholar 

  19. É. M. Belenov and A. V. Nazarkin, Pis’ma Zh. Éksp. Teor. Fiz. 51, 252 (1990) [JETP Lett. 51, 288 (1990)].

    ADS  Google Scholar 

  20. É. M. Belenov, A. V. Nazarkin, and V. A. Ushchapovskii, Zh. Éksp. Teor. Fiz. 100, 762 (1991) [Sov. Phys. JETP 73, 422 (1991)].

    ADS  Google Scholar 

  21. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, The Theory of Waves (Nauka, Moscow, 1990).

    Google Scholar 

  22. N. S. Buinov, V. R. Nagibarov, and N. K. Solovarov, Ukr. Fiz. Zh. 22, 151 (1977).

    Google Scholar 

  23. R. K. Dodd, J. C. Eilbeck, J. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, New York, 1982; Mir, Moscow, 1988).

    Google Scholar 

  24. E. S. Benilov and S. P. Burtzev, Phys. Lett. A 98, 256 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  25. V. G. Makhan’kov, Yu. P. Rybakov, and V. I. Sanyuk, Usp. Fiz. Nauk 162(2), 121 (1992) [Sov. Phys. Usp. 35, 55 (1992)].

    Google Scholar 

  26. V. E. Zakharov, Zh. Éksp. Teor. Fiz. 62, 1745 (1972) [Sov. Phys. JETP 35, 908 (1972)].

    Google Scholar 

  27. D. N. Kaup and A. C. Newell, J. Math. Phys. 19, 798 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  28. T. Kawata, N. Kobayashi, and H. Inoue, J. Phys. Soc. Jpn. 46, 1008 (1978).

    MathSciNet  Google Scholar 

  29. V. A. Vysloukh and I. V. Cherednik, Teor. Mat. Fiz. 78, 35 (1989).

    MathSciNet  Google Scholar 

  30. S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: the Inverse Scattering Method (Nauka, Moscow, 1980; Consultants Bureau, New York, 1984).

    Google Scholar 

  31. D. Anderson, Phys. Rev. A 27, 3135 (1983).

    ADS  Google Scholar 

  32. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976, 5th ed.; Fizmatlit, Moscow, 1963).

    Google Scholar 

  33. V. É. Gusev and A. A. Karabutov, Laser Optical Acoustics (Nauka, Moscow, 1991).

    Google Scholar 

  34. A. M. Kosevich and A. S. Kovalev, Introduction to Non-linear Physical Mechanics (Naukova Dumka, Kiev, 1989).

    Google Scholar 

  35. S. V. Sazonov, Fiz. Tverd. Tela (St. Petersburg) 37, 1612 (1995) [Phys. Solid State 37, 875 (1995)].

    Google Scholar 

  36. O. Anderson, in Physical Acoustics: Principles and Methods, Vol. 3, Part B: Lattice Dynamics, Ed. by W. P. Mason (Academic, New York, 1965; Mir, Moscow, 1968).

    Google Scholar 

  37. V. S. L’vov, Nonlinear Spin Waves (Nauka, Moscow, 1987).

    Google Scholar 

  38. V. I. Vlasov, V. I. Talanov, and V. A. Petrishchev, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 14, 1353 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 118, No. 1, 2000, pp. 20–35.

Original Russian Text Copyright © 2000 by Sazonov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sazonov, S.V. Acoustic activity effect for picosecond soliton-like pulses. J. Exp. Theor. Phys. 91, 16–30 (2000). https://doi.org/10.1134/1.1307231

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1307231

Keywords

Navigation