Skip to main content
Log in

Non-LTE analysis of the formation of EuII lines in the atmospheres of solar-type stars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A method to analyze the statistical equilibrium of the EuII ion based on a 36-level model atom has been developed. The formation of EuII lines without assuming local thermodynamic equilibrium (LTE) is considered for T eff=5500–7000 K, logg=4.0, and metallicities [A] from 0 to −1.5. Non-LTE effects in the level populations are primarily due to radiative pumping of excited states from the ground and low-lying levels, which leads to over-population of upper relative to lower levels. As a result, the studied λ4129 and λ6645 Å lines are weaker than in the LTE case. However, due to the small energy differences between even low-lying EuII levels, collisional coupling is strong, and deviations from LTE in EuII lines are modest: for the Sun, non-LTE corrections to the abundance are only 0.04 dex. The non-LTE effects grow with an increase in the effective temperature and with a decrease in the metallicity, so that non-LTE abundance corrections can reach 0.12 dex for T eff=5500K, logg=4.0, [A]=−1.5 and 0.1 dex for T eff=7000K, logg=4.0, [A]=0. The effect of inaccuracy in the atomic parameters for EuII on the non-LTE calculations is examined. Analysis of the profiles of the solar EuII λ4129 and λ6645 Å lines is used to empirically refine estimates of the efficiency of collisional processes in forbidden transitions in establishing the distribution of EuII ions over excited states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Mashonkina and I. F. Bikmaev, Astron. Zh. 73, 109 (1996) [Astron. Rep. 40, 94 (1996)].

    Google Scholar 

  2. L. I. Mashonkina, T. Gehren, and I. F. Bikmaev, Astron. Astrophys. 343, 519 (1999).

    ADS  Google Scholar 

  3. G. J. Mathews, G. Bazan, and J. J. Cowan, Astrophys. J. 391, 719 (1992).

    Article  ADS  Google Scholar 

  4. A. G. W. Cameron, Astron. Astrophys., Suppl. Ser. 82, 123 (1982).

    Google Scholar 

  5. E. Anders and N. Grevesse, Geochim. Cosmochim. Acta 53, 197 (1989).

    Article  ADS  Google Scholar 

  6. R. G. Gratton and C. Sneden, Astron. Astrophys. 287, 927 (1994).

    ADS  Google Scholar 

  7. W. C. Martin, R. Zalubas, and L. Hagan, Atomic Energy Levels—The Rare Earth Elements, NSRDS-NBS 60 (US Gov. Print. Off., Washington, 1978).

    Google Scholar 

  8. F. Kupka, N. Piskunov, T. A. Ryabchikova, et al., Astron. Astrophys., Suppl. Ser. 138, 119 (1999).

    Article  ADS  Google Scholar 

  9. V. A. Komarovskii, Opt. Spektrosk. 71, 559 (1991) [Opt. Spectrosc. 71, 322 (1991)].

    Google Scholar 

  10. R. L. Kurucz, CD-Roms, Nos. 18, 19 (1994).

  11. G. Peach, Mem. R. Astron. Soc. 71, 13 (1967).

    Google Scholar 

  12. H. van Regemorter, Astrophys. J. 136, 906 (1962).

    ADS  Google Scholar 

  13. C. W. Allen, Astrophysical Quantities (Athlone, London, 1973; Mir, Moscow, 1977).

    Google Scholar 

  14. H.-W. Drawin, Z. Phys. 164, 513 (1961).

    Google Scholar 

  15. I. I. Sobelman, L. A. Vainshtein, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Nauka, Moscow, 1979; Springer, Berlin, 1981).

    Google Scholar 

  16. W. Steenbock and H. Holweger, Astron. Astrophys. 130, 319 (1984).

    ADS  Google Scholar 

  17. Y. Takeda, Pub. Astron. Soc. Jpn. 46, 53 (1994).

    ADS  Google Scholar 

  18. N. A. Sakhibullin, Tr. Kazan. Gor. Astron. Obs. 48, 9 (1983).

    ADS  Google Scholar 

  19. L. H. Auer and J. Heasley, Astrophys. J. 205, 165 (1976).

    Article  ADS  Google Scholar 

  20. L. I. Mashonkina, N. A. Sakhibullin, and N. N. Shimanskaya, Astron. Zh. 73, 212 (1996) [Astron. Rep. 40, 187 (1996)].

    Google Scholar 

  21. R. O. Doyle, Astrophys. J. 153, 987 (1968).

    Article  ADS  Google Scholar 

  22. D. Gray, The Observation and Analysis of Stellar Photospheres (Wiley, New York, 1976; Mir, Moscow, 1983).

    Google Scholar 

  23. R. L. Kurucz, I. Furenlid, J. Brault, and L. Testerman, Solar Flux Atlas from 296 to 1300 nm (Nat. Solar Obs., Sunspot, New Mexico, 1984).

    Google Scholar 

  24. D. Biehl, Sonderdruck der Sternwarte Kiel, No. 229 (1976).

  25. M. Steffen, Astron. Astrophys., Suppl. Ser. 59, 403 (1985).

    ADS  Google Scholar 

  26. L. I. Mashonkina, Model Atmospheres and Spectrum Synthesis, ASP Conf. Ser. 108, 140 (1996).

  27. H. Holweger and E. Muller, Solar Phys. 39, 19 (1974).

    Article  ADS  Google Scholar 

  28. N. Grevesse, A. Noels, and A. J. Sauval, Astron. Soc. Pac. Conf. Ser. 99, 117 (1996).

    ADS  Google Scholar 

  29. K. Butler, private communication (1999).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 77, No. 8, 2000, pp. 630–640.

Original Russian Text Copyright © 2000 by Mashonkina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mashonkina, L.I. Non-LTE analysis of the formation of EuII lines in the atmospheres of solar-type stars. Astron. Rep. 44, 558–568 (2000). https://doi.org/10.1134/1.1306356

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1306356

Keywords

Navigation