Skip to main content
Log in

On the thermal mechanism of microwave breakdown of high-temperature superconducting films

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Theoretical arguments supporting the thermal nature of the microwave breakdown of high-temperature superconducting films are compared with experimental data. A comparison of the theoretical and experimental values of the threshold field for breakdown of a uniform film, B f, and the threshold field for breakdown at nonsuperconducting defects, B d, confirms the dependence corresponding to a thermal mechanism: B f, B d∝ (T c-T 0)1/2. It is shown that the space-time picture of the observed breakdown is apparently due to overheating of the film near defects with a size of 10−5–10−6 m. The amplitude of the breakdown field may ultimately be limited by the abrupt decrease in the energy of critical disturbances for the initiation of breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Ralston, Supercond. Sci. Technol. 4, 386 (1991).

    Article  ADS  Google Scholar 

  2. W. L. Holstein, L. A. Parisi, Z.-Y. Shen et al., J. Supercond. 6, 191 (1993).

    Article  ADS  Google Scholar 

  3. W. Diete, B. Aschermann, H. Chaloupka et al., Applied Superconductivity 1995 (Proc. EUCAS’95), IOP, Bristol, UK (1995), Vol. 2, pp. 1107–1110.

    Google Scholar 

  4. M. Manzel, S. Huber, H. Bruchlos et al., Applied Superconductivity 1995 (Proc. EUCAS’95), IOP, Bristol, UK (1995), Vol. 2, pp. 1155–1158.

    Google Scholar 

  5. S. Hensen, M. Lenkens, M. Getta et al., Applied Superconductivity 1995 (Proc. EUCAS’95), IOP, Bristol, UK (1995), Vol. 2, pp. 1127–1130.

    Google Scholar 

  6. N. Klein, N. Tellmann, U. Dahne et al., IEEE Trans. Appl. Supercond. AS-5, 2663 (1995).

    Google Scholar 

  7. W. Diete, M. Getta, M. Hein et al., IEEE Trans. Appl. Supercond. AS-7, 1236 (1997).

    Google Scholar 

  8. G. Hampel, P. Kolodner, P. L. Gammel et al., Appl. Phys. Lett. 69, 571 (1996).

    Article  ADS  Google Scholar 

  9. M. Hein, W. Diete, M. Getta et al., IEEE Trans. Appl. Supercond. AS-7, 1264 (1997).

    Google Scholar 

  10. J. Wosik, L. M. Xie, J. H. Miller et al., IEEE Trans. Appl. Supercond. AS-7, 1470 (1997).

    Google Scholar 

  11. J. Wosik, L. M. Xie, D. Li et al., Czech. J. Phys. 46, Suppl. S2, 1133 (1996).

    Google Scholar 

  12. H. Padamsee, IEEE Trans. Magn. MAG-19, 1322 (1983).

    Google Scholar 

  13. J. Halbritter, Proceedings of the 1972 Applied Superconductivity Conference, IEEE, New York (1972), pp. 662–666.

    Google Scholar 

  14. A. A. Zharov, A. L. Korotkov, and A. N. Reznik, Sverkhprovod. (KIAE) 5, 419 (1992) [Superconductivity 5, 413 (1992)].

    Google Scholar 

  15. A. A. Zharov, A. L. Korotkov, and A. N. Reznik, Supercond. Sci. Technol. 5, 104 (1992).

    Article  ADS  Google Scholar 

  16. A. A. Pukhov, Pis’ma Zh. Tekh. Fiz. 22(12), 55 (1996) [Tech. Phys. Lett. 22, 504 (1996)].

    Google Scholar 

  17. A. A. Pukhov, Supercond. Sci. Technol. 10, 82 (1997).

    ADS  Google Scholar 

  18. N. A. Buznikov and A. A. Pukhov, Pis’ma Zh. Tekh. Fiz. 22(12), 45 (1996) [Tech. Phys. Lett. 22, 499 (1996)].

    Google Scholar 

  19. H. A. Buznikov and A. A. Pukhov, Pis’ma Zh. Tekh. Fiz. 22(20), 51 (1996) [Tech. Phys. Lett. 22, 843 (1996)].

    Google Scholar 

  20. N. A. Buznikov and A. A. Pukhov, Supercond. Sci. Technol. 10, 318 (1997).

    Article  ADS  Google Scholar 

  21. A. A. Zharov and A. N. Reznik, Zh. Tekh. Fiz. 68(1), 126 (1998) [Tech. Phys. 43, 117 (1998)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Pis’ma Zh. Tekh. Fiz. 24, 12–17 (June 12, 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pukhov, A.A. On the thermal mechanism of microwave breakdown of high-temperature superconducting films. Tech. Phys. Lett. 24, 417–418 (1998). https://doi.org/10.1134/1.1262138

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1262138

Keywords

Navigation